
 i

MODELING QOS PARAMETERS IN COMPONENT-BASED SYSTEMS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Praveen Gopalakrishna

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

August 2004

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2004 2. REPORT TYPE

3. DATES COVERED
 00-00-2004 to 00-00-2004

4. TITLE AND SUBTITLE
Modeling QoS Parameters in Component-Based Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Purdue University,Department of Computer and Information
Sciences,Indianapolis,IN,46202

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

101

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 ii

To amma

 iii

ACKNOWLEDGEMENTS

 It�s been a knowledge elevating experience during my course of graduate studies

at the Department of Computer and Science, Indiana University Purdue University

Indianapolis. I would like to take this opportunity to express my gratitude to all those

who made my graduate study, a memorable one and making this thesis possible.

I would like to thank my advisor Dr Rajeev Raje for creating an opportunity, for

me to be part of UniFrame project. I thank him for all his advice on the research front as

well as guiding me in my graduate studies. I am grateful for his constant encouragement

which made it possible for me to explore and learn new things.

I wish to thank Dr Andrew Olson for providing me with valuable advice and input

in my research front and being on my thesis committee.

I would also like to thank Dr Stanley Chien for being on my thesis committee and

for reviewing my thesis.

I am thankful to U.S. Department of Defense and the U.S. Office of Naval

research for supporting this research with their grant.

I would like to thank all my teammates of UniFrame project, faculty and the staff

of Computer Science Department for their co-operation and assistance towards this

thesis.

Finally I would like to thank my mother, brother and sister for their kind support

and encouragement.

 iv

TABLE OF CONTENTS

Page

LIST OF TABLES ...vi

LIST OF FIGURES.. vii

ABSTRACT...ix

1. INTRODUCTION...1

1.1. Problem Definition and Motivation ...3

1.2. Objectives: Statement of Goals ...6

1.3. Contribution of this Thesis ..6

1.4. Organization of this Thesis..7

2. BACKGROUND AND RELATED WORK ..8

2.1. Quality Objects ...8

2.2. Quality of Service Modeling Language ...11

2.3. Component Quality Modeling Language...14

2.4. ISO/IEC 9126 ...19

2.5. Object Constraint Language ..21

2.6. Modeling QoS in Components ..23

3. THE UNIFRAME..25

3.1. The UniFrame Approach...25

3.2. Unified Meta-component Model ...28

3.3. Quality of Service Catalog ..31

3.4. UniFrame Glue Generator (UniGGen) Framework..34

4. MODELING QOS PARAMETERES IN CBSD ..38

4.1. The QoS Concept..38

4.1.1. QoS Concept Model ...40

 v

 Page

4.1.2. QoS Statement ...43

4.1.3. Dynamic QoS Profile ...44

4.1.4. Dynamic and Static QoS Characteristic Models..45

4.1.5. Static QoS Determination Process ..46

4.2. UML Profile for QoS ..46

4.2.1. Graphical Representation of Stereotypes and Tags51

4.2.2. OCL Expression for Precise Constraint ..54

4.3. Relating Functional and Non-functional Models ...55

4.3.1. Reusability of Non-functional Model ...57

4.4 Mapping of Non-functional Model onto the Code ..59

4.4.1. Mapping of Dynamic QoS Specification onto the Code................................59

4.4.2. Mapping of Static QoS Specification onto the Code65

5. CASE STUDY ..70

6. CONCLUSION ...85

6.1. Features of QoS Specification ...85

6.2. Issues Not Addressed ..86

6.3. Future Work..86

6.4. Summation..87

LIST OF REFERENCES...88

 vi

LIST OF TABLES

Table Page

Table 4.1. Stereotype and Tags for DynamicQoSProfile and Transition47

Table 4.2. Tag Type for DynamicQoSProfile and Transition..48

Table 4.3. Stereotype and Tags for DynamicQoSStatement ...49

Table 4.4. Tag Type for DynamicQoSStatement ..49

Table 4.5. Stereotype and Tags for DynamicQoSCharacteristic50

Table 4.6. Tag Type for DynamicQoSCharacteristic ..50

Table 4.7. Stereotype and Tags for StaticQoSCharacteristic...50

Table 4.8. Stereotype and Tags for Process..50

Table 4.9. Tag Type for Process ..51

Table 4.10. Stereotype and Tags for StaticQoSProfile..51

Table 4.11. Stereotype and Tags for Access Control ..67

 vii

LIST OF FIGURES

Figure Page

Figure 2.1. A CDL Contract...9

Figure 2.2. A SDL Specification..10

Figure 2.3. A Sample Contract Type..12

Figure 2.4. A Sample Contract...13

Figure 2.5. A Sample Profile ...13

Figure 2.6. QoS Concept Model...14

Figure 2.7. QoS Profile Concept ..15

Figure 2.8. QoS Statement Concept ...16

Figure 2.9. QoS Characteristic Concept ...17

Figure 2.10. QoS Specification ..18

Figure 2.11. OCL Constraint..22

Figure 2.12. Functional Model of A System...22

Figure 3.1. The UniFrame Approach..26

Figure 3.2. A UMM Component Description ...30

Figure 3.3. Turn-Around-Time Parameter Description...33

Figure 3.4. Effect of Environment on QoS...34

Figure 3.5. Glue Generation Architecture ..36

Figure 4.1. OMG RFP for QoS Profile...39
Figure 4.2. QoS Concept Model...41

Figure 4.3. Dynamic QoS Statement Concept ..44

Figure 4.4. Dynamic QoS Profile ...45
Figure 4.5. Dynamic QoS Characteristic ..45

Figure 4.6. Static QoS Characteristic ...46

 viii

Figure Page
Figure 4.7. Static QoS Process...46

Figure 4.8. Visual Representation of DynamicQoSProfile..52
Figure 4.9. Visual Representation of Transition ...52

Figure 4.10. Visual Representation of DynamicQoSStatement.......................................52
Figure 4.11. Visual Representation of DynamicQoSCharacteristic53

Figure 4.12. Visual Representation of StaticQoSCharacteristic53
Figure 4.13. Visual Representation of StaticQoSProfile ...53

Figure 4.14.Visual Representation of Automated Process, Manual Process and Process
Transition...53

Figure 4.15. Delay Constraint Using OCL in DynamicQoSStatement54
Figure 4.16. Collaboration Diagram Indicating the Relation Between Functional and

Non-functional Model..57
Figure 4.17. Collaboration Diagrams Indicating Reusability ..58

Figure 4.18. Multiple Context Specification using an endToendDelay Profile58
Figure 4.19 Throughput QoS Specification ..62

Figure 4.20. Transformed Throughput Model ..63

Figure 4.21. Throughput Constraint Realization Code..64

Figure 4.22. Access Control Model..68

Figure 4.23. Access Control Specification ...69
Figure 5.1. Class Diagram for Document Management System......................................71

Figure 5.2. Sequence Diagram for Validating User and Retrieving Document................72

Figure 5.3. Collaboration Diagrams for Document Management System73

Figure 5.4. endToendDelay QoS Specification...76

Figure 5.5. Collaboration Diagram Specifying the QoS Specification77

Figure 5.6. Collaboration Diagram for Document Terminal and UserValidationServer ..84

Figure 5.7. Access-Control Specification ...84

 ix

ABSTRACT

Gopalakrishna, Praveen. M.S., Purdue University, August 2004. Modeling QoS
Parameters in Component-based Systems. Major Professor: Rajeev Raje.

Current trends in the software development are focused on creating systems by

integrating previously developed software components. This approach aids in the

reusability of the code and helps to reduce the cost of software development. In addition

to the functionality a component offers, it may contain the necessary code for measuring

how well the functionality will be achieved during the execution. This gives rise to the

notion of quality of service (QoS) offered by a component -- latency, throughput,

capacity, precision, etc., are a few examples of QoS parameters. Many applications, such

as multi-media, emphasize and require a certain level of the QoS offered by components.

Thus, it is critical to model the QoS, at an appropriate level of an abstraction, during the

modeling of component-based systems. Such a modeling will not only assist the

component developers but also emphasize the need for integrating the QoS during the

development and implementation phases of the software design. In this thesis, an

approach based on a unified framework (UniFrame) is proposed to model the QoS

parameters in component-based systems. The approach involves QoS concepts relevant

for specifying QoS, a UML profile for representing the concepts, integrating the QoS

specification with the functional specification and mapping the specification manually

onto the code of the component.

 1

1. INTRODUCTION

Component based software development (CBSD) is an emerging field which aims

at developing software systems out of prefabricated Commercial off the shelf (COTS)

software components. A software component is defined by [SZY99] as a unit of

composition which has contracts specified in its interface and explicit context

dependencies of the component. A component could be deployed independently and can

be used as a composition unit for building applications by third parties. Technological

advances in networking have led to high speed network connections between computers

and thus aided in a new computing paradigm called distributed computing, where

components involved in the application are remotely located and communication between

these components happens using a network.

A number of distributed computing models are in existence for developing

distributed computing applications. Some of them are J2EETM, .NETTM, CORBATM, etc.

These models do not provide facilities to interact with each other, thus hindering

interoperability among components which adhere to various models. For example, J2EE

focuses on Java programming language to create distributed systems and thus, can build

systems composed of Java components. .NET framework supports multiple programming

languages, provided that the language conforms to .NET Common Language Interface.

Such a model enables the creation of distributed systems that work well within its

domain, but when it comes to creating distributed systems involving components

adhering to different models, it hinders, as the models do not consider the idiosyncrasies

of the other models.

 An approach that takes into consideration the existence of different models is

required for achieving interoperability among models. One possible approach is to use a

meta-model which encompasses the necessary aspects of components which adhere to

 2

distributed computing models. Such a meta-model will assist in achieving interoperability

among different heterogeneous distributed computing models. One such meta-model is

incorporated in UniFrame.

The UniFrame and UniFrame Approach (UA) [RAJ01, RAJ02] provide a

framework which allows a seamless interoperation of heterogeneous and distributed

software components. The key concepts of the approach are: a) A meta-component model

(the Unified Meta Model � UMM [RAJ00]), with an associated hierarchical setup for

indicating the contracts and constraints of the components and associated queries for

integrating a distributed system, b) distributed resource discovery service for discovering

the components, c) the validation and assurance of Quality of Service (QoS) based on

concepts of event grammars.

The UniFrame framework automates the process of integrating heterogeneous

components to create a distributed system that conforms to QoS requirement. The QoS is

an abstract term that is realized by how much a user of the system was satisfied by the

functionality provided by the system. The framework incorporates a discovery service,

UniFrame Resource Discovery Service (URDS) [NAY02], which discovers the

components necessary to build a system. The discovered components may be

heterogeneous in nature, so in order to make them interoperate, a glue and wrapper

generation framework is provided as part of UniFrame. The glue and wrapper generation

framework generates the necessary code that mediates between heterogeneous

components to make them interoperate. Since glue and wrapper code forms part of the

system, it must be quality aware so that it does not hinder the QoS provided by the

system formed by composing heterogeneous components. In some cases, if the discovery

service is not able to find some of the components necessary to build the system, it may

be useful to generate the components by using existing code generation techniques. One

such technique is provided in Generic Modeling Environment [GME02], which allows

the system developer to model the functionality of a system and generate the code. The

component generated must provide the necessary QoS as it forms the part of the

composed system in UniFrame.

 3

1.1. Problem Definition and Motivation

The CBSD is about developing a system with prefabricated components. The

UniFrame provides a framework to create a distributed system that conforms to quality

requirements. It has been indicated in [SUN02] that the QoS offered by the components

in the component-based distributed system has a significant effect on the QoS for the

entire system. The QoS provided by the system developed using CBSD will depend on

the QoS provided by the constituent components, which are interacting with each other.

The QoS provided by a component depends on whether it received necessary resources,

which will ensure the satisfactory functioning of the component. The resources may be a

computed value required by component A which is expected to be provided by

component B. In a system, in which each component�s QoS offer depends on the QoS

provided by the interacting components, there is a need to ensure that the proper QoS is

provided by all interacting components, such that, the system formed out of these

components provides the necessary QoS to the user of the system. Some applications,

such as multi-media, emphasize and require that a certain level of QoS be offered by the

integrated system. This emphasizes that the constituent components must provide the

necessary QoS. Thus, it is critical to model QoS, at an appropriate level of abstraction,

during the design of any component-based system. Such a model will not only assist the

component developer but also emphasize the need for integrating QoS during the design

and implementation phases of software. Abstractions of QoS also assist in reuse of

information during the design and implementation phases. The Object Management

Group (OMG), a consortium of industries for creating standards in many domains has

recognized the importance of emphasizing QoS during design and has issued a Request

for Proposal (RFP) for modeling QoS and fault tolerance characteristics and mechanisms

[OMG02].

Software development had taken a new approach with availability of Computer

Aided Software Engineering (CASE) tools, which depict the abstracted information about

the functionality of the system in a graphical format. This graphical model is used by a

code generator to generate code templates. The process of creating a graphical model

involves gathering of information about the functionality of the system and representing

 4

it using an accepted standard. This process provides the notion of abstracting information

which is not dependent on technology, and it also suggests that the abstracted information

could be reused. OMG�s Model Driven Architecture [MDA01] initiative is an example

which aims at separating business or application logic from underlying technology. It

also aims at standardizing these Platform Independent Models and transformations of

these models to multiple Platform Specific Models. Abstracted QoS information can be

represented in a graphical format which can be used to specify QoS during the design

phase of components, which in turn would be used by the code generator to generate code

templates which are quality aware.

The Unified Modeling Language (UML) [UML01] by OMG is a visual paradigm

for describing the functional aspects of an object-oriented system. The visual paradigm

for software development has been accepted as a way of describing the functionality of

the system [UML01] and it has been supported by the availability of CASE tools. UML,

though rich in modeling elements for functional aspects of the system, lacks the support

for modeling or expressing constraints on the objects of the system [OCL01]. Many

existing formal languages for describing these constraints could have been used but they

require mathematical background for the system developer. The Object Constraint

Language (OCL) is used to address the issues of expressing constraints on the objects of

the system. The OCL was designed to be simple enough for developers, yet able to

express the constraints without ambiguity. The OCL is a pure expression language and it

does not have any side effects [OCL01]. Adding an OCL expression in a functional

model will not cause the state of the system to change, even though OCL could be used to

specify the state change. The OCL uses a lexical approach to specify constraints and to

express the constraints using OCL requires the specification of context in which the

constraint has to be applied and the context may involve all or some of the following,

objects, methods, roles, attributes, association. These constraints are typically expressed

in a file which has to be referenced while viewing the functional model. If a complex

system is involved, significant effort is needed for viewing and comprehending the

constraints of the system.

 5

The QoS can be viewed as constraints expressed on the components of the

system. The OCL could be used to express these QoS constraints, but its lexical nature

makes the component developer, who is not an expert at programming, to put more effort

in comprehending the constraints of the system. However, computers can process textual

representation more easily than graphical one as graphics needs to be converted to an

intermediate form so that the existing computer technology can be used to process the

representation. It has been indicated in [NOS90] that the visual representation is more

understandable and transparent than the textual representation. However, [GRE92] states

that visual representation deemphasizes the issues of syntax and provides a higher level

of abstraction. This thesis proposes an approach to represent QoS that makes use of the

better of both worlds by representing the concepts for QoS (which will be explained in

Chapter 4) essential for specifying QoS in visual paradigm and expressing the constraints

in a QoS visual model using text. In addition to representation of QoS, the thesis also

proposes an approach where the same QoS information can be used for another context in

a system. The OCL currently does not provide a way of reusing the information and

thereby not reducing the effort required for expressing the constraints of the system.

The UML [UML01] provides an extension mechanism for modeling issues

specific to a domain. The UML provides two ways to extend the model, which are the

Heavyweight extension and Lightweight extension mechanisms. The Heavyweight

extension mechanism extends by modifying the existing UML meta-model. The

Lightweight extension mechanism extends without modifying the meta-model. It extends

by adding Stereotype, Tagged values and constraints to the meta-model. The Stereotype,

Tagged values and constraints are derived from the existing model elements, attributes,

methods, links, etc., in the UML meta-model. These extensions are grouped together to

form a profile, which will enable description of particular modeling problems, specific to

the domain and thus, provide constructs to express them.

In this thesis, a QoS profile is proposed that enhances the UML to provide a

visual paradigm for expressing QoS. The OCL is used to augment the visual model in

expressing precise constraints. The QoS model (visual representation of QoS), referred to

as the non-functional model, depicts only the QoS aspect of the functional model. Thus, it

 6

is a separate view of the functional model. This thesis also provides an approach to relate

the non-functional and functional model.

1.2. Objectives: Statement of Goals
The objectives of this thesis are:

• Provide a representation mechanism for specifying non-functional attributes of

the components and a system of components during its design and

implementation phase.

• Provide a way of integrating the functional and non-functional model during

design and development phases of the system.

• Provide a way of mapping the specification of QoS onto the system code.

• To study the effectiveness of the proposed non-functional model on various QoS

parameters defined in QoS catalog [BRA02].

The approach used in this thesis to achieve the above mentioned objectives and goals are

as follows:

• Extension of generic QoS concepts proposed in [AAG01] to incorporate the

concepts related to QoS parameters that do not get affected during run time.

• Representation of the QoS concepts in UML.

• Integration of the functional model and non-functional model using interaction

diagrams of UML.

1.3. Contribution of this Thesis

The contributions of the thesis are as follows:

• Proposes Quality of Service concepts relevant for modeling QoS of components.

• Creates a QoS profile in UML to represent the QoS concepts.

• Proposes an approach for integrating functional and non functional model.

• Manually mapping QoS specifications onto relevant code of the component.

 7

• A case study from the document management domain to illustrate the

applicability of the proposed approach in real world scenarios.

1.4. Organization of this Thesis

The thesis is organized into six chapters. Chapter 1 provides the introduction to thesis

with problem definition and motivation. Chapter 2 presents the related work on modeling

QoS in CBSD. Chapter 3 describes about the UniFrame approach, UMM and the glue

wrapper generation. Chapter 4 presents an approach to model quality of service along

with concepts and representation using UML. It also proposes an approach to integrate

the functional and non functional model. Chapter 5 presents a case study to validate the

approach. Chapter 6 presents the conclusion to the thesis by listing the features of the

model, possible enhancements and future work.

 8

2. BACKGROUND AND RELATED WORK

This chapter provides an overview of the existing QoS specification mechanisms

for components in distributed systems.

2.1. Quality Objects

The Quality Object (QuO) is a framework [BBN01] for providing QoS in

distributed applications that are composed of objects. The QuO is intended to help

application developers to develop distributed applications with specific QoS

requirements. It enables the specification, measurement and control of QoS of the

application and the adaptation to changes in QoS. The QuO attempts to bridge the gap of

network level guarantees and application level QoS requirements.

The QuO extends the functional IDL of CORBA to incorporate QoS. The QoS is

specified using QoS description language (QDL) which describes the QoS contracts

between the clients and the objects, the resources of the system, and the way of

measuring and providing QoS.

The QDL consists of Contract Description Language (CDL) and Structure

Description language (SDL). CDL is used to specify the QoS contract between the client

and object in an application. The QoS contract indicates the QoS required by the client

and the QoS that can be provided by the object. The QoS contract also specifies the

possible levels of QoS the system provides, the behavior to invoke when the client

desires, the object expectation or QoS conditions change.

The CDL contract consists of: a) a set of nested operating regions indicating the

possible states of the QoS. Each state has a predicate associated with it to indicate

 9

whether the state is active or not, b) a transition for each state to specify the behavior to

invoke when the active region changes, c) references to system condition objects, which

are passed as parameters to contracts in order to measure and control QoS, and d)

callbacks to notify client or objects about the transition from one state to another.

A sample CDL contract which specifies the throughput for the system is shown in

Figure 2.1.

contract Throughput(syscond valuesSC ValueSCimpl ClientExpectedThroughput,
callback AvailCB ClientCallback,
syscond ValueSC ValueSCImpl MeasuredThroughput,
syscond Thpr ThprSCImpl ThprMgr) is.
negotiated regions are
 region low_throughput: when ClientExpectedThroughput == 10 =>
 reality regions are
 region Low : when MeasuredThroughput < 10 =>
 region Normal: when MeasuredThroughput == 10 =>
 region High: when MeasureThroughput > 10 =>
 transition are
 transition any->Low :ClientCallback.throughput_degraded();
 transition any->Normal: ClientCallback.throughput_normal();
 transition any->High: ClientCallback.Throughput_being_wasted();
 end transition;
 end reality regions;
 region high_throughput : when ClientExpectedThroughput >=11 =>
 reality regions are

 region Low : when MeasuredThroughput < ClientExpectedThroughput =>
 region Normal: when MeasuredThroughput >= ClientExpectedThroughput =>
 transition are
 transition any->Low :ClientCallback.throughput_degraded();
 transition any->Normal: ClientCallback.throughput_normal();
 end transition;
 end reality regions;
 transitions are
 transition low_throughput-> high_throughput
 Thprmgr.adjust_throughput(ClientExpectedThroughput)
 transition high_throughput->low_throughput
 Thprmgr.adjust_throughput(ClientExpectedThroughput)
 end transition;
 end negotiated region;
end Throughput contract;

 Figure 2.1. A CDL Contract

 10

The above sample CDL contract specifies the Throughput behavior of a QuO

application. The client has two operating regions, which are low_throughput and

high_throughput. These two regions have nested regions in which the system can operate.

The client can request different Throughput based on the client�s requirements. These

requested throughputs are correspondingly indicated by low_throughput and

high_throughput regions. The contract also specifies the method to be invoked whenever

there is a transition from one region to another.

The Structural Definition Language (SDL) describes the structure of the remote

object implementation, such as implementation alternatives and adaptive behavior of the

object delegates. A SDL description has: a) a set of interfaces and contracts with adaptive

behavior specified by the SDL specification, b) method calls for which the adaptive

behavior is to be specified, c) a set of regions indicating the states that QoS can adapt to

and, d) behavior specification of various alternative object bindings.

A Sample SDL specification is shown in Figure 2.2.

delegate behavior for Targeting and Throughput is
 obj : bind Targeting with name SingleTargetingobject;
 group: bind Targeting with characteristic { Througput = True };

 call distance_to_target:
 region Throughput.Normal:
 pass to group;
 region low_throughput.Normal :
 pass to obj;
 region high_throughput.Low:
 throw ThroughputDegraded;
 default:
 pass to obj;
 return distance_to_target:
 pass through;
 default
 pass to obj;

end delegate behavior;

 Figure 2.2. A SDL Specification

 11

The QuO focuses only on the quality aware communication channel between the

client and the servers. It supports the specification of QoS characteristics which are

measurable and vary during the runtime, thereby forcing a restriction on the type of QoS

characteristics that can be used for specifying QoS. Some of the characteristics which

may not be specifiable using QuO are accuracy, dependability, security, etc., as these

characteristics do not vary during runtime.

The QuO specifies the quality contracts the client and object will have. It does not

specify on how this contract is reflected in the implementation of the object. It is left to

the developer to provide the implementation for the contract during the development of

the object.

The Quality specification provided by QuO is for the entire system and it does not

provide a way to specify QoS of individual components involved in the system.

2.2. Quality of Service Modeling Language

The QoS Modeling Language (QML) proposed in [FRO98] is a QoS specification

language which can be used to specify QoS in Object-Oriented systems. The QML

provides a QoS specification mechanism that

a) is syntactically separate from the service specification, such as the Interface.

This feature provides a way to specify different QoS properties for various

implementations of the same interface,

b) allows the QoS of the client to be specified separately from the QoS of the

server. This feature allows a developer to specify the QoS properties of a

component separately for all the components which are involved in

collaboration to form a system,

c) allows a way to determine whether the QoS specification for a service satisfies

the QoS requirements by the client.

The QML is a general purpose QoS specification language for describing QoS

parameters in any application domain. It provides three concepts for specifying QoS:

contract type, contract and profile. A contract type relates dimensions to a QoS category

 12

defined in [ISO99]. Performance, reliability, and security are few examples of QoS

categories. A contract type has a dimension type for each of the dimensions in the

category. For example, delay and throughput are dimensions of QoS category

performance. A dimension type provides a way of indicating the value of the dimension.

Three dimension types which have been defined in QML are Set, Enumeration and

Numeric.

Contracts are instances of a contract type and their structure is defined by the

contract type. A contract contains a list of constraints which is imposed on the values of

the dimensions of a QoS category. A constraint consists of: a name of the dimension, an

operator and a value. For example in the constraint, numberofFailure == 10, the

constraint specifies the numberofFailure dimension to be equal to ten.

The profiles separate the QoS specification for a component from the interface

definition of the component. A profile is related to an interface and it specifies the QoS

contracts for the attributes and operations described in the interface. A profile is used to

specify client QoS requirements or server QoS provisioning. A profile will be bound to

an entity and the entity can be a client or a server. A sample specification for contract

type, contract and profile are shown in Figure 2.3, 2.4, 2.5 respectively.

type Reliability = contract {

numberOfFailure: decreasing numeric per year;
meanTimeToRepair: decreasing numeric sec;
availability: increasing numeric;

};

Figure 2.3. A Sample Contract Type

A sample contract type for Reliability is shown in Figure 2.3. The contract type

for Reliability has dimensions: numberOfFailure, meanTimeToRepair and availability.

The associated values for the dimension are also shown in the Figure. According to the

contract, the numberOfFailure suggests that decreasing failure rate is desirable. The

 13

meanTimeToRepair should be of decreasing value and the system availability to be of

increasing value.

systemReliability Reliability contract {
 numberoFFailure < 5 units/yr
};

serverReliability Reliability contract {

 meanTimeToRepair < 10 sec;
};

Figure 2.4. A Sample Contract

A sample contract for reliability is shown in Figure 2.4. The contract

systemReliability is an instance of contract type Reliability. It will have the structure of

contract type Reliability. The above contract for systemReliability specifies the number of

failures to be less than 5. If any of the dimensions in the contract type is omitted in

contract, it is assumed to be not provided by the component. Similarly, the contract

serverReliability requires the mean time to repair to be less than 10 sec..

interface server {
 void init();
 void register(string name);
 object lookup (string name);
 }

serverProfile for server = profile {
 require serverReliability;

 };

Figure 2.5. A Sample Profile

The Figure 2.5 shows a profile for a server interface. The profile termed

serverProfile associates contracts with the operations defined in the server interface. The

serverProfile associates the serverReliability contract as the default contract.

 14

The QML is a generic QoS specification language. It allows separation of QoS

specification from the functional specification. It allows creation of profiles to associate

the QoS with the functional specification, but it does not provide a way to specify the

number of contracts which can be offered by the component developer for varying

environmental conditions.

2.3. Component Quality Modeling Language

The Component Quality Modeling Language (CQML) [AAG01] is generic QoS

specification language to specify QoS of components in a distributed system. The CQML

provides the necessary concepts and constructs to specify QoS of components. The

CQML concept model for QoS is shown in Figure 2.6. The figures depicted in this

section are from the work [AAG01]. The concept model has elements which are

independent entities and are indicated by rectangular blocks. The relations between these

blocks are indicated using UML notation for Association and Generalization. A

QoSComponent offers services with certain QoS specified in its QoSProfile. A

QoSProfile is a relation that specifies the QoS provided by the QoSComponent. The QoS

is specified by using statements that are indicated as QoSStatement in the model. A

QoSStatement indicates the restraining values on the QoSCharacteristic and is therefore

composed of constraints, which are termed QoSConstraint. A QoSConstraint indicates

the restrictions on the QoSCharateristic.

 1 for

 0...* provides

 1..*

 1..* 1..*
 uses

Figure 2.6. QoS Concept Model

QoSProfile QoSStatement

QoSComponent
QoSCharacteristic

QoSConstraint

 15

A QoSComponent represents the role of a model element, which could be a

component, actor, interface, use case, or object.

The QoSProfile concept shown in Figure 2.7 specifies the contract terms under

which the component can have a QoS relation. It specifies the conditional contracts under

which the component will provide the necessary QoS as long as the environment

provides the QoS needed by the component. A QoSProfile may be simple or compound.

A SimpleProfile specifies one QoS offer by the component and one QoS expectation

from the environment by the component. A CompoundProfile specifies more than one

offer and expectation pair. A CompoundProfile can adapt to changes during run time by

transitioning from one profile to another. The transition occurs when an existing profile

expectation gets invalidated due to environment changes and there exists another profile

which assumes a weaker expectation. A QoSProfile uses a ProfileTransition function to

make a call back operation on the component in order for the component to adapt, in

accordance to the change.

 for

 1 0..* provides

 1 1
 Ordered
 1..* 1 1

 0�* from 1 1 to uses

 0..* ordered

Figure 2.7. QoS Profile Concept

 The conceptual model of QoSStatement is shown in Figure 2.8. A QoSStatement

specifies the QoS offers and QoS expectations by the component. A QoSStatement can be

a single or compound. A Compound statement is comprised of two or more

QoSStatement. A Compound statement relates to its constituent QoSStatement�s by AND

or OR relations. A single QoSStatement contains a QoSConstraint. A QoSStatement may

QoSComponent QoSProfile

CompoundProfile SimpleProfile

Operation ProfileTransition

QoSStatement

 16

have parameters, which relate to properties of the component to which the QoSStatement

pertains. The QualificationKind attribute type is an enumeration whose values are

{guaranteed, best effort, threshold}.

 2..*

 relation

 0�* ordered

 1

Figure 2.8. QoS Statement Concept

 The QoSCharacteristic as defined in [ISO99] is some aspect of QoS which is

identifiable and quantifiable. For example, delay, throughput, security, etc. The Figure

2.9 shows the conceptual model for the QoSCharacteristic. A Composition attribute

denotes the effect with respect to composition of the QoSCharacteristic under

consideration. Value attribute denotes how the values of the QoSCharacteristic can be

derived at run time. QoSCharacterisitc has a domain associated which specifies the

values the QoSCharacteristic can have, and it also indicates whether an increasing value

or a decreasing value is good.

 The DirectionKind attribute type is an enumeration whose values are undefined,

increasing, decreasing. The StatisticalAttributeKind attribute type is an enumeration

whose values are {undefined, maximum, minimum, range, mean}.

QoSStatement

QoSSingleStatement

Parameter (core)

CompoundQoSStatement

QoSConstraint

Qualification: QualificationKind

QoSCharacteristics

 17

 1

 Ordered 1..*

 1..*

Figure 2.9. QoS Characteristic Concept

 The Figure 2.10 shows the specification of a statistical_delay characteristic and

the specification of a QoS statement for guaranteed_high characteristic. The domain in

the statistical_delay indicates that decreasing numeric values are good and the

characteristic value is expressed as the mean of the values. The Frame output statement

in guaranteed_high characteristic specifies the frame rate of 25 or greater is required for

guaranteeing high quality video.

DataType
Parameter

QoSCharacteristic
Invariant: BooleanExpression
Parallel_and_composition: MappingExpression
Parallel_or_composition: MappingExpression
Sequential_composition: MappingExpression
Values: MappingExpression

Domain

Direction: DirectionKind

<<Primitive>>
Numeric

Set
Enumeration

<<Enumeration>>
StatisticalAttributeKind

StringSet <<Primitive>>
String

 18

 QoSCharacteristic:

Quality_Characteristic statisticalDelay {

domain: decreasing numeric millisecond;

mean;

}

 QoSStatement:

Quality guaranteed_high {

frameoutput >= 25

}

Figure 2.10. QoS Specification

 The CQML is able to express QoS specifications for components and is

applicable to QoS parameters which can be specified and implemented as part of a

component. The CQML does not provide ways to specify QoS characteristics, such as

security or maintainability, that are realized by conducting external tests on the

component. The CQML does not provide concepts for specifying some QoS

Characteristics like security, maintainability, dependability, etc., such that the

implemented code aids in the testing of the component.

 19

2.4. ISO/IEC 9126

The ISO/IEC 9126 [ISO99] is a standard from the International Organization for

Standardization. The ISO/IEC 9126 provides standards for evaluating quality of a

software product. The standard lists a set of quality characteristics for evaluating software

products. The standard defines the quality characteristics and provides a simple way to

measure them. It defines six quality characteristics for a software product and these

characteristics are further divided into sub-characteristics. The six quality characteristics

and their associated sub-characteristics are listed and defined below.

 a) Functionality

 It refers to whether the software product has the desired functionality

required by the user.

• Suitability: To evaluate whether the software has the functionality which

is required to perform the specified task.

• Accurateness: To evaluate whether the software functionality provides the

right or agreed results when used.

• Interoperability: To evaluate whether the software functionality can

interoperate with other parts of the system.

• Security: To evaluate whether software functionality can be prevented

from unauthorized access.

 b) Reliability

 It is used to evaluate the reliability of the software product.

• Maturity: To evaluate the frequency of software product failures due to

software faults.

• Recoverability: To evaluate whether the data can be recovered in case of

software product failure and the time and effort needed for it.

• Fault Tolerance: To evaluate whether the software product can maintain

the level of performance in case of software faults.

 20

c) Usability

 It is used to evaluate the usability of software product.

• Understandability: To evaluate the effort needed to understand the logical

concept of the software product

• Learnability: To evaluate the effort needed for learning the application of

software products

d) Efficiency

It is used to evaluate the efficiency of the software product.

• Time Behavior: To evaluate the response and processing time for the use

of functionality of the software product.

e) Maintainability

It is used to evaluate the complexity of effort needed to change the

functionality of the software product.

• Changeability: To evaluate the effort needed to modify or remove faults in

the software product.

• Stability: To evaluate the risk involved in the functionality of the software

product if the functionality is modified.

• Testability: To evaluate the effort needed for validating the modified

software.

f) Portability

It is used for evaluating the software products ability to operate in

different environment.

• Adaptability: To evaluate the software product�s ability to adapt to new

environment without modifying the software product.

• Installability: To evaluate the effort needed to install the software product

in a specified environment.

• Conformance: To evaluate the conformance of the software product for

standards or conventions relating to software portability.

 21

The ISO/IEC 9126 standard identifies the QoS characteristics which are intended

for software in general, but it does not identify some of the QoS Characteristics which are

unique to CBSD like capacity, ordering constraints, etc.

The ISO/IEC 9126 provides a way to evaluate the QoS of the software product

which has already been designed and implemented. It does not provide a way to specify

QoS during the design phase of the component so that the QoS factors can be taken into

consideration during implementation of the component.

2.5. Object Constraint Language

The Object Constraint Language (OCL) [OCL01] provides a way of specifying

the constraints on the model elements of the functional model of a software system. A

constraint is a restriction on one or more values of an Object-Oriented model or system.

The functional model depicts the abstracted functionality of a software system in a visual

paradigm. The UML, a visual paradigm, by OMG is used to depict the abstracted

functionality of the software system. The UML provides necessary modeling elements for

modeling an Object-Oriented system. However it does not provide a way of representing

constraints on the system.

The OCL was developed to address the issue of expressing constraints on the

system. It is a simple, text-based formal language for expressing constraints on the

system, and it is also used to define precise semantics to the modeling elements of UML,

and thereby enabling creation of precise models of the system functionality. The

constraints, when enforced and followed, will result in providing QoS by the system.

A simple OCL constraint example from [WAR03] is shown in Figure 2.11 for a

system depicted in 2.12.

 22

 context Flight:

inv: passengers->size() <= plane.numberOf Seats

Figure 2.11. OCL Constraint

 0.* 1

 flights plane

 flights 0..*

 passenger 0..*

Figure 2.12. Functional Model of A System

The functional model shown in Figure 2.12 has three objects interacting with each

other: flight, airplane and person. The constraint shown in Figure 2.11 puts a restriction

on the role named passenger such that the number of passengers must be less than or

equal to the number of seats in the plane. This constraint must be true at any instant of

time; thus it is indicated by specifying it to be an invariant. This constraint when enforced

and followed will result in QoS characteristic called capacity.

The OCL provides a way of specifying QoS during the design phases of the

component, but currently does not provide a facility to reuse the constraint in some other

context. Each constraint has a context associated with it. It does not provide a construct to

specify multiple contexts with the same constraint.

The OCL does not provide constructs for expressing QoS characteristics like

security, maintainability, etc.

Flight

flightnr: Integer

availableSeats(): Integer

Airplane

numberOfSeats: Integer

Person

name: String

 23

2.6. Modeling QoS in Components

In the previous sections of this chapter a few of the related works for specifying

QoS in CBSD were discussed along with their shortcomings. Some of the shortcomings

are summarized here.

a) Unable to specify QoS during design phases of the component such that it gets

reflected in the implementation of the component by using existing code

generation techniques [GME02].

b) Unable to provide reusability of QoS specification.

c) Identifying and defining QoS parameters, which enhance the current list of

parameters defined in ISO 9126, and are relevant for CBSD such as ordering

constraint, parallelism, etc.

d) Specifying QoS parameters which do not change during runtime of the

component like security, maintainability, etc.

e) Mapping of QoS specification onto the source code statements of the

component, which does the necessary functionality to measure and ensure

QoS.

UniFrame framework [RAJ01, RAJ02] provides the generation of QoS aware

glue and wrappers and QoS aware components. Thus it needs a QoS specification

mechanism which can

a) Specify the QoS parameters for individual components and for the whole

system.

b) Provide reusability of QoS specifications to minimize the effort of specifying

QoS.

c) Provide a mapping mechanism to reflect the QoS specification on the code

that will ensure the QoS of the functionality.

The thesis provides a QoS specification mechanism that

a) Extends the concepts defined in CQML [AAG01] to take into account the

parameters which do not vary during run time.

b) Represents the concepts in UML, thereby providing constructs to express QoS

during the design phases of the component.

 24

c) Uses the Quality catalog [BRA02], a work which is part of UniFrame

framework, to identify the QoS parameters for CBSD.

d) Provides a mechanism to reuse the QoS specification.

e) Is manually mapped onto code.

In this chapter an overview of the existing QoS specification mechanism was

presented. Some of the drawbacks of the existing QoS specification mechanisms were

summarized, and the need for QoS specification mechanisms that can take into account

the drawbacks of the existing approaches so that quality aware glues and wrappers and

components can be generated in UniFrame was also indicated. The next chapter provides

an overview of UniFrame approach.

 25

3. THE UNIFRAME

The objective of the thesis is to provide a QoS specification mechanism during

the design phase of the system composed of components. This QoS specification

mechanism: a) aids in designing quality aware components which can perform a part of

the functionality of the system to be built, b) enable the UniFrame glue wrapper

generator, which is a part of UniFrame framework to generate quality aware components,

to provide an interoperability mechanism for heterogeneous components,

In the previous chapter, an overview of the existing techniques for specifying QoS

of the system was presented. This chapter presents an overview of The UniFrame

approach, Unified Meta-Component model and the UniGGen glue generator which will

provide a prelude for the objective of the thesis.

3.1. The UniFrame Approach

This section presents the UniFrame approach which implements the concepts

identified in UMM (presented in next section) for achieving discovery, interoperability,

and collaboration of components adhering to various distributed component models. The

UniFrame approach is shown in figure 3.1. The approach has two phases, a) The

component development and deployment phase, b) The automatic generation of system

using components and validation of QoS of the system.

The UniFrame approach uses a generative programming [CAZ99] paradigm to

generate the system from components. The UniFrame approach assumes that the

generation of system will be built around a Generative Domain specific Model (GDM)

which supports component assembly. This emphasizes that the component will be created

for a specific application domain based on a standardized knowledgebase. The UniFrame

 26

knowledgebase indicated in the Figure 3.1 is assumed to be created by domain experts,

will contain the necessary application domain information such as the concepts related to

the domain (like transaction, type of accounts, etc, for banking domain) usage of concepts

(Use cases), etc. The component developer uses the information in knowledgebase to

develop the component for a specific application domain. The developer will also include

the specification of the component which details about the computational, cooperative,

auxiliary aspects, QoS metrics of the component and general information like the

application domain, author, etc. The component developer will use the QoS catalog

[BRA02] (explained in the section 3.3) to obtain the necessary QoS parameters for the

component and does an empirical evaluation of the QoS of the component. If the values

of the QoS parameters are satisfied then the component is deployed on the network.

Figure 3.1. The UniFrame Approach

 27

 These components once deployed on the network are discovered by the head-

hunters. The head-hunters are a part of the Distributed Resource Discovery process

indicated in the Figure 3.1. The UniFrame Resource Discovery Service (URDS)

framework which implements the Distributed Resource Discovery Process provides the

functionality for discovering components and has the following constituent components:

• Internet Component Broker (ICB): It provides the communication infrastructure

necessary to identify and locate services, enforce domain security and handle

mediation between the heterogeneous components. The ICB component provides

these services using a Domain Security manager (DSM), Query Manager (QM),

Adaptor Manager (AM) and the Link Manager (LM).

• DSM: It serves as an authorized third party for enforcing access control of the

users of the domain.

• QM: The QM translates the natural language like query from the system

integrator to a structured query and passes it onto the appropriate domain head-

hunters.

• LM: The LM establishes links with other ICBs for the purpose of federation and

to propagate query received from the QM to other ICB.

• AM: The AM servers as a registry/lookup for clients seeking adaptor

components.

• Head-Hunters (HH): The head-hunter performs the discovery of service

providers and registers their functionality. It returns a list of service providers

which matches the requirement of the system integrator to the ICB.

• Meta-Repository (MR): The MR serves as a data store which is used by the head-

hunter to hold the UMM specification information of the service exporters

adhering to different models.

 The generation of integrated system from independently developed and deployed

components, begins with the system developer, willing to build a system, by presenting a

query to the system generator. The query describes about the characteristic of the system

in a structured form of natural language. The query is processed with the help of domain

 28

knowledge in the UniFrame Knowledgebase and a set of functional and QoS based

search parameters are generated which are presented to the Distributed Resource

Discovery which will use the information to aid the head-hunters in discovering the

components, which meet the functional and QoS requirements. The discovered

components are returned to the system integrator. If all the required components

indicated in the knowledgebase are found, then the system is built using the system

generator. If some of the components are not found then the system integrator can modify

the system query by adding more information about the system to be built to get the

components necessary to build the system or may supply proprietary components.

 Once the system has been built by the generator, it is tested for desired

functionality and QoS criteria by using event traces and a set of test cases. In UniFrame

event grammars [AUG95, AUG97] are used measure and validate the QoS parameter

which vary based on usage pattern and environmental condition. An event is a detectable

action performed by the component, like method call or execution of a statement. An

event may include another event or precede another event. A system is composed of

events with the relation between them indicated by precede or include. These relations

form an event trace which is used to validate QoS. If the system meets the QoS and

functionality criteria, it is deployed or else another system is built from the component

collection and tested.

 The QoS specification mechanism enhances the UniFrame knowledgebase ability

to specify the QoS chosen for the component.

3.2. Unified Meta-component Model

The Unified Meta-component Model (UMM)[RAJ00, RAJ01] provides the

fundamental concept for UniFrame approach and it attempts to unify the existing and

emerging distributed models under one common meta-model, thereby enabling

discovery, interoperability and collaboration of heterogeneous components. The meta-

model is composed of three parts and they are

 29

a) Components: The UMM considers components as autonomous entities whose

implementation are non-uniform and adhere to some distributed component

model. Each component will have a state, identity, behavior, well defined

interface and private implementation. In addition to these characteristics, the

components in UMM are considered to have a computational aspect,

cooperative aspect and an auxiliary aspect.

i. Computational aspect: The computational aspect reflects the task

performed by each component which in turn depends on the

objectives of the task, techniques carried out to achieve the task

and the specification of the functionality offered by the component.

The UMM indicates the computational aspect using a mixed

approach in which the informal text is used to provide book

keeping information about the component and precise formal part

for the description of computation, its associated contracts and

level of service offered by the component.

ii. Cooperative aspect: The UMM assumes that the components are in

the process of cooperating with each other and this is indicated by

the cooperative aspect which indicates the collaborators which can

collaborate with the component under consideration. It also

indicates the components on which the component under

consideration depends upon for collaboration as well as the other

components which depend on this component.

iii. Auxiliary aspect: The auxiliary aspect indicates the other issues

like mobility, security, and fault tolerance of the component.

A sample UMM description of the component indicated in [RAJ01] is

shown in Figure 3.2.

 30

Figure 3.2. A UMM Component Description

b) Service and Service Guarantees: A UMM component may offers services in

the form of an intensive computational effort or an access to underlying

resources. There may be several components which can offer the same service

and thereby offering a choice for the developer to choose the component,

which he finds it useful. The indicators which can be used for selecting the

component are the cost and the QoS offered by the component. In UMM it is

necessary to specify the QoS that the component can offer in terms of the QoS

parameters listed in the QoS catalog [BRA02].

c) Infrastructure: The UMM tackles the issues of non-uniformity in DCS due to

local autonomy through the concept of head-hunter and Internet-Component

Broker. These two concepts allow interoperability of different component

models.

i. head-hunter: The head-hunter carries the task of detecting new

components in the search space and registering their functionality.

A head-hunter is analogous to a binder or a trader in other models,

but differentiates itself from them by being active. The head-

 31

hunter is active as it discovers the components and registers with

itself, where as in trader, the components bear the responsibility of

registering themselves with the trader. A UMM component will

inform about its aspects to the head-hunter which is used for

match making of service producers and consumers. The head-

hunter may cooperate with each other for discovering larger

number of components.

ii. Internet-Component Broker: The Internet-Component Broker is

intended to mediate between two components which adhere to

different component models. It uses the adaptor technology for

providing translation capabilities for specific component

architectures. The computational aspect of the adaptor component

indicates the model for which it provides the interoperability

mechanism. The adaptor technology achieves interoperability

using the principles of wrap and glue technology [BER01]. The

Internet-Component Broker is analogous to Object Request Broker

(ORB) which provides interoperability among objects written in

different programming languages. The Internet-Component Broker

is intended to provide interoperability among components adhering

to different models by generating glues and wrappers.

3.3. Quality of Service Catalog

 In UniFrame, service and service guarantees is integral part of every component

UMM specification. It is used during the system generation phase for ensuring service

guarantees. The UniFrame Quality of Service (UQOS) [BRA02] framework provides the

infrastructure for ensuring service and service guarantees. This framework provides an

objective paradigm for quantifying and specifying the quality of software components. It

also takes into account the effect of environment and usage pattern on the QoS of the

software components. The objectives of the UQOS framework is to objectively quantify

 32

the QoS of software components, standardize the notion of quality of components using

QoS catalog, standard approach to incorporate the effect of environment on the QoS of

the software components, an approach to incorporate effect of usage patterns on the QoS

of components and to provide a specification mechanism to specify QoS of software

components.

 The QoS catalog lists and provides details of the QoS parameters for the software

components. The component developer can use the catalog to identify the QoS

parameters relevant for the component. Some of the details which are provided for the

QoS parameters in the catalog are

a) The domain of usage, which will assist the component developer to select the QoS

parameters relevant for the domain.

b) Whether the QoS parameter varies during runtime based on usage pattern and the

operating environment and thereby assisting the component developer to know whether

the QoS of the component can be improved by changing the environmental condition and

usage pattern.

c) Nature of the parameter, which classifies the QoS parameters according to the

characteristics. This classification assist the component developer in making out whether

the QoS parameter is a time related (throughput, delay, etc), importance related (priority),

capacity related (capacity), etc.

d) Composability of QoS parameter.

e) The methodology for the quantification of the QoS parameter.

f) Interrelationships of the QoS parameter with other parameters.

 A part of Turn-Around-Time parameter details, which is depicted in [BRA02], is

shown in Figure 3.3.

 33

Figure 3.3. Turn-Around-Time Parameter Description

 The UQOS takes into account the effect of the environment and the usage patterns

on the QoS of the software component by providing the necessary steps to consider the

environmental condition. The Figure 3.4 shows the steps indicated in [BRA02] to

consider environmental conditions.

 34

For each selected parameter Pi (i=1 to n),
a. If Pi is static,

i. for each set of representative test cases, tc (c=1 to n)
 Run the instrumentation code, record the values
ii. Include the QoS metrics in the UniFrame description of the
 component.

b. Else, If Pi is dynamic,
 Vary the set of environment variables Ej (j=1 to m) as follows:
 Select a subset Es (s=1 to k) of Ej

i. Vary the environment variables in the subset Es while keeping
the variables in the set (Ej- Es) constant.
ii. Run the instrumentation code and record the value of the

parameter
Pi for each set of values of environment variables in Es.
iii. Plot a graph of Pi versus Es.
iv. Prepare a table with values of Es and Pi.

v. Include the prepared table in the UniFrame description of the
 component.

Figure 3.4. Effect of Environment on QoS

 The QoS specification mechanism, which will be presented in the next chapter,

will provide a way for the component developers to specify the QoS parameters

mentioned in the catalog so that a quality aware component is generated.

3.4. UniFrame Glue Generator (UniGGen) Framework

 The UniGGen provides the framework for generating glue code necessary to

make the heterogeneous components discovered by the URDS, to communicate with each

other using a template based approach. The templates provide a mechanism to generate

classes and functions based on type parameters. Currently the glue generator framework

provides interoperability mechanisms for Java RMI and CORBA components. The

template contains the glue generic code required to interoperate between Java RMI and

 35

CORBA components using RMI-IIOP for communication. The UniGGen architecture

proposed in [TUM04] is shown in Figure 3.5.

 The input to the glue generator consists of the system name along with the list of

heterogeneous components, which needs glue for interoperation. The GlueGenerator gets

the necessary UMM specification, the component interactions and the technology of the

heterogeneous components from the knowledgebase and passes it onto GlueCodeGen and

GlueConfigGen. The GlueCodeGen generates the necessary glue code to interoperate

using the glue code templates and GlueConfigureGen generates the glue configure code

to using glue configure templates. The glue configure code is used to configure the

initiator component to the glue and glue to the responder component. An initiator

component is one which request services and responder component is one which provides

services.

 The knowledgebase provides information to the GlueGenerator such as the URL

of the UMM specification of the components and component interactions. The UMM

specification of the component has a URL which gives the remote location of the

component. The component interaction indicates the initiator and responder components.

The knowledgebase also contains the glue code templates and the glue configure

templates. The framework also provides a GUI for compiling and deploying the glue

code.

 36

Figure 3.5. Glue Generation Architecture

SYSTEM NAME (List of
components to be composed
as a System)

ummSpecification
URL�s of Initiator and
Responder components

Gets Initiator and
Responder

components

Compiles and
executes

For each Initiator-
Responder

component pair
which requires

glue

GlueGenerator

System Name

GlueCodeGen GlueConfigureGen

UMMSpecTable
(Component name,
ummSpecification URL)

UMMSpecification
Parser

Compiles and
executes

ComponentInteraction
Table (System name,
Initiator component name,
Responder component
name)

Glue code
Template

Glue
configure
Template

GlueConfigureGenGUIGlueCodeGenGUI

Knowledgebase

Glue code Glue configure code

create create

Glue
Generation

Architecture

INPUT

OUTPUT

Initiator and Responder concrete components

GlueGeneratorKB

 37

 In this section a brief overview of UniFrame was presented. The glue generator is

provided as part of the UniFrame framework for providing interoperability mechanism

for components adhering to different distributed component models. The glue generator

currently uses templates which are not quality aware. There is a need for quality aware

templates to create quality aware glue code. This will ensure that the QoS provided by the

system composed of components (including the glue component), satisfies the system

integrator QoS requirements.

 This thesis provides a QoS specification mechanism for code generators like

[GME02] to generate code templates which are quality aware. The following chapter

gives the details about the QoS specification mechanism.

 38

4. MODELING QOS PARAMETERS IN CBSD

In the previous chapter an overview of the UniFrame, UMM, QoS catalog and

UniGGen was presented. The necessity for specifying QoS during design time of the

component such that it aids in development of quality aware glues for interoperability of

the heterogeneous components was also indicated. This chapter describes the QoS

specification mechanism for generating QoS aware components. It has four parts,

namely: The QoS concepts, the QoS profile for providing constructs for specifying QoS,

integration of the QoS specification with the functional specification of the system and

mapping of the QoS specification onto the relevant parts of the component code that form

the system. The details of these parts are explained in the sections of the chapter.

4.1. The QoS Concept

 The QoS concepts provide the necessary principles for specifying the QoS during

the design phase of the component. The main difficulty in specifying QoS for

components is the determination of what constitutes the QoS specification and the

elements identified for QoS specification to be able to specify all the QoS parameters that

are appropriate for a particular component. The QoS concepts proposed in this section

provide a way of specifying all QoS parameters by

• using the classification of QoS parameters mentioned in the QoS catalog

[BRA02]; the parameters are classified to be either static or dynamic based on the

behavior of the parameters due to varying environmental conditions. The value of

a static parameter value does not vary during runtime of the component while the

value of the dynamic parameter can vary during run time of the component,

 39

• using the concepts proposed by [AAG01] for identifying the elements which

constitute the specification of the dynamic QoS parameters,

• extending the concepts proposed by [AAG01] for identifying the elements which

constitute the specification of the static QoS parameters.

The QoS concept model is aimed at identifying the necessary elements which can

aid in the QoS specification for the component. The component developer will be able to

use the concepts for semantics of the elements that constitute the QoS specification,

thereby aiding him to specify the QoS during design of the component.

The OMG has recognized the importance of QoS during design and development

phase and has issued a Request for Proposal (RFP) for a UML profile for Modeling

Quality of Service and Fault Tolerance Characteristics and Mechanisms [OMG02]. The

key mandatory requirements are shown in Figure 4.1.

Figure 4.1. OMG RFP for QoS Profile

 40

This RFP calls for the classification of different kinds QoS, including the ones

which are fixed during runtime and the others which are managed dynamically. It also

makes the identification of concepts of QoS and the definition of different kinds of QoS

characteristics for different categories as a part of the mandatory requirements. The

proposed QoS concept model in this thesis incorporates the necessary concepts for

specifying QoS.

4.1.1. QoS Concept Model

The proposed QoS concept model, presented in this thesis, extends the QoS model

of [AAG01], which was described in the Chapter 2 (section 2.3). The specifications of

throughput and maintainability QoS parameters for a component are used as examples to

indicate the need for using and extending the model [AAG01]. Let the constraint imposed

on the throughput of the component by a developer be 20 units/sec. By using the model

proposed in [AAG01], the QoS statement concept enables QoS statement code to be

incorporated in the component to measure and ensure the necessary throughput (20

units/sec). The constraint concept enables the QoS statement to ensure the required QoS

(20 units/sec) be provided. The QoS characteristic concept enables identifying the QoS

parameter (throughput) for the component. The profile concept will enable us to create

multiple sets of QoS statements to take into account the effect of the environment on the

QoS of the component. The required QoS and provided QoS relations, specify the QoS

that a component expects from the environment and the QoS, a component can provide

(20 units/sec). These relations get reflected as statements in the component. This model is

able to provide concepts for parameters which vary based on the environmental

condition. Now let us take an example to specify QoS parameters whose values do not

vary due to environmental condition (like maintainability).

The determination of the static QoS parameter, maintainability, involves testing

for lines of code, method coupling, cyclomatic complexity, etc., on the developed

component. The semantics of the QoS concept identified in [AAG01] does not provide a

way to incorporate static QoS specification that will enable generation of interfaces for

 41

testing the component. For example, the cyclomatic complexity is the number of

independent paths in the program. These paths will have statements that perform some

functionality of the component and they are not QoS statements. Hence, there is a need to

extend the model to take into account the specification of static QoS parameters. The

proposed approach in this thesis uses the [AAG01] model to incorporate concepts for

dynamic QoS parameters. The model of [AAG01] is presented in a different aspect to just

indicate that dynamic QoS concepts can also be viewed in another way. The difference

can be seen in provided and required QoS concepts. These are considered as QoS

statements in the proposed approach for QoS specification, which reflect the required

QoS and provided QoS of the component. The QoS statements relate to a QoS

characteristic and the QoS characteristic relates to a component using a profile.

The figure 4.2 shows the extended concept model for QoS. The figure has

rectangular boxes, which represents the independent concept elements and the relation

between these elements is indicated by using the Generalization and Association

representation mechanisms of UML.

Figure 4.2. QoS Concept Model

 A QoSCharacteristic is some aspect of QoS which can be identified and

quantified. For example, delay, throughput, capacity, maintainability, etc. Some of these

QoSCharacteristics can vary during runtime and some of them remain constant. This is

 42

indicated by classifying the QoSCharacteristic to be dynamic and static respectively. A

QoSCharacteristic is composed of StaticQoSCharacteristic (such as maintainability,

dependability, etc) and DynamicQoSCharacteristic (such as delay, capacity, etc.). A

DynamicQoSStatement is composed of DynamicQoSConstraint. A

DynamicQoSStatement specifies the QoS statement that constrains a

DynamicQoSCharacteristic. A constraint is a restriction on the values of a

DynamicQoSCharacteristic. The ProvidedQoS and RequiredQoS are statements which

express the QoS provided by the component and the QoS expectation from environment

by the component. A DynamicQoSProfile relates all the DynamicQoSStatement to the

QoSComponent. A QoSComponent concept represents a scenario where the

QoSCharacteristic statements are applied, for example, an object, a use case, a method. A

DynamicQoSCharacteristic can be measured by incorporating the DynamicQoSStatement

in the component. A StaticQoSCharacteristic determination process involves conducting

external tests on the component. There are different models proposed, that will enable the

determination of different StaticQoSCharacteristic, for example, the Maintainability

model [FRA94] based on software metrics for determination of maintainability of the

component and the Dependability model [VOA00] for determination of the dependability

of the software component. These models may have concepts that can be automated as

well as the concepts that have to be carried out manually. For example, the determination

of maintainability of the component using [FRA94] involves the determination of lines of

code, that can be automated and the determination of method coupling, which has to be

done manually. The AutomatedProcess concept represents the part of the

StaticQoSCharacteristic determination process that can be automated and

ManualProcess concept represents the part that has to be carried out manually. The

ProcessTransition specifies the transition from automatic to manual process and vice

versa.

 The knowledge about the StaticQoSCharacteristic determination process will

enable the component developer to know about the support (like interface for testing) that

a component has to provide for StaticQoSCharacteristic determination process. The

component developer may specify the information about the StaticQoSCharacteristic

 43

model during the design phase of the component, thereby generating the necessary

supporting mechanism to aid the StaticQoSCharacteristic determination process in testing

the component. For example, knowledge about the AutomatedProcess will enable the

component developer to know the part of the process that needs support from the

component (such as providing an interface for testing), and the ManualProcess will

enable him to know about the part of the source code necessary for determining the

StaticQoSCharacteristic (such as classes needed for determining the method coupling).

The component developer could also follow the StaticQoSCharacteristic determination

model to incorporate the necessary concepts during the design phase of the component.

An example of access-control StaticQoSCharacteristic is explained in section 4.4.2. The

StaticQoSProfile relates the process needed for determining the static QoS to the

QoSComponent.

4.1.2. QoS Statement

 The DynamicQoSStatement concept shown in Figure 4.3 specifies that the QoS

statement can be a SingleDynamicQoSStatement or CompoundDynamicQoSStatement.

The CompoundDynamicQoSStatement is an aggregation of 2 or more

SingleDynamicQoSStatement. The relations between the SingleDynamicQoSStatement in

a CompoundDynamicQoSStatement are indicated by AND or OR logical operators. The

ProvidedQoS statement and RequiredQoS statement specifies the QoS, provided by the

component and the QoS, the component expects from the environment. The association

between the ProvidedQoS and the RequiredQoS indicates that for each ProvidedQoS

there is a RequiredQoS. The DynamicQoSConstraint has a qualification attribute whose

values can be either guaranteed or best-effort. The constraint attribute specifies the

constraint on the values of the DynamicQoSCharacteristic.

 44

Figure 4.3. Dynamic QoS Statement Concept

4.1.3. Dynamic QoS Profile

 The DynamicQoSProfile relates the DynamicQoSStatment to the QoSComponent.

The QoSComponent expects certain QoS from the environment in order for it provide a

certain QoS. The QoS expected from the environment by the component is measured by

the component using a set of statements to determine the environment QoS If the

environment cannot provide the necessary QoS, then the component can assume a weaker

expectation of QoS from the environment. This is enabled by switching to another profile

that makes weaker assumptions about the environment QoS. This concept is indicated in

Figure 4.4. The Transition association has an operation attribute, which specifies the

method to be invoked in the component to switch to another set of

DynamicQoSStatement, that make a weaker assumption about the environment QoS.

 45

Figure 4.4. Dynamic QoS Profile

4.1.4. Dynamic and Static QoS Characteristic Models

A DynamicQoSCharacteristic shown in Figure 4.5 has a domain associated with

it. The domain specifies the values the DynamicQoSCharacteristic can have. The

direction attribute specifies whether the increasing or decreasing value is better for the

DynamicQoSCharacteristic. The statisticalattribute attribute provides a way to specify

the values using statistical concepts like mean, variance, etc. The string attribute indicates

whether the QoS characteristic value is undefined or defined. The QoSCategory groups

related QoS characteristics under one category (e.g., delay and throughput under the

Time-related category). Similarly, the StaticQoSCharacteristic concept is shown in

Figure 4.6.

Figure 4.5. Dynamic QoS Characteristic

 46

Figure 4.6. Static QoS Characteristic

4.1.5. Static QoS Determination Process

The AutomatedProcess and ManualProcess, shown in Figure 4.7, have attributes,

which specify the model used for the determination of the QoS and the part, which can be

automated or manually carried out. This information, when specified during design of the

component, will enable generating the necessary support (e.g., interfaces, classes, etc.)

for the QoS determination model. The ProcessTransition has attributes that specify the

transition from automated to manual and vice versa.

Figure 4.7. Static QoS Process

4.2. UML Profile for QoS

The concepts identified for QoS in the previous section need a representation

mechanism so that they can be used for specifying QoS during the design phase of the

 47

component. This representation will enable the component developer to specify QoS for

the component during the design phase.

The UML provides a way of representing the functionality of the system in a

visual paradigm. It does not provide a way to specify QoS. However UML provides a

way to extend its capability to represent a problem domain by its extensibility

mechanism. It provides two ways to extend the model: Heavyweight extension and

Lightweight extension [UML01]. The Heavyweight extension mechanism involves

modifying the existing UML meta-model elements. The Lightweight extension

mechanism allows using the existing UML meta-model elements to add new elements

that extend the existing model elements. The Light weight extension mechanism is used

in our approach so that the extension to the meta-model will not affect other domains

which use existing UML meta-model elements for providing constructs. The Light

weight extension mechanism involves identifying the stereotypes and tagged values from

the concepts.

The Table 4.1 show, the stereotype and tagged values which have been identified

for DynamicQoSProfile and Transition representation.

Table 4.1. Stereotype and Tags for DynamicQoSProfile and Transition

The <<DynamicQoSProfile>> stereotype extends the Classifier of the UML

meta-model and it has a tag named for. The target of the <<DynamicQoSProfile>> is

specified by for tagged value. The target can be an object, use-case, or component. The

tag types are shown in Table 4.2. The classifier is a model element provided in UML

meta-model to express the structural (attributes) and behavioral (methods) features.

 48

Table 4.2. Tag Types for DynamicQoSProfile and Transition

The tag for is of type association. One end of the association is a

DynamicQoSProfile and the other end of the association is a QoSComponent. There may

be many DynamicQoSProfile�s for a QoSComponent and many QoSComponent�s for a

single profile. This will enable reusability of the QoS specification for different contexts.

from and to tags are of type <<DynamicQoSProfile>> and they specify the source and

target profile, during a transition. The operation tag is of type operation in UML, and it

specifies the behavior to invoke to inform about the change in profile for the component.

The stereotypes and tags for the DynamicQoSStatement are shown in Table 4.3.

The <<DynamicQoSConstraint>> and <<DynamicQoSStatement>> extends the classifier

of the UML meta-model. The <<DynamicQoSConstraint>> has constraint and

qualification as tags. The constraint specifies the constraint on QoScharacteristic and

qualification specifies whether the constraint has to be guaranteed or best-effort. The

<<ProvidedQoS>> and the <<RequiredQoS>> extends

<<SingleDynamicQoSStatement>> and the tags indicate the provided and required QoS

of the QoSComponent. The <<SingleDynamicQoSStatement>> and

<<CompoundDynamicQoSStatement>> extends <<DynamicQoSStatement>>. The QoS

statement may have a qosparameter, which relates to properties of the QoSComponent.

The logicaloperator specifies the relation between two or more

<<DynamicQoSStatement>> using an AND or OR logical operator. The tag types are

shown in Table 4.4.

 49

Table 4.3. Stereotype and Tags for DynamicQoSStatement

Table 4.4. Tag Type for DynamicQoSStatement

 The stereotype and tags for DynamicQoSCharacteristic is shown in Table 4.5.

The <<DynamicQoSCharacteristic>> extends the classifier of UML meta-model. The

invariant tag specifies whether the characteristic value must be constant or vary during

the runtime. The <<Domain>> indicates the values, the QoS characteristic can have and

the tags provide a way of specifying the value in terms of statistical concepts (like mean,

variance, etc), the string (specifies whether the value is undefined), and direction

(specifies whether increasing or decreasing value of the characteristic is better). The tag

type is shown in Table 4.6. The Stereotype and tags for StaticQoSCharacteristic are

shown in Table 4.7. The tag types for StaticQoSCharacteristic are same as tag type of

DynamicQoSCharacteristic. The semantics of stereotype and tags of

StaticQoSCharacteristic are similar to those of stereotype and tags of

DynamicQoSCharacteristic, except that the StaticQoSCharacteristic remains constant

during runtime.

 50

Table 4.5. Stereotype and Tags for DynamicQoSCharacteristic

Table 4.6. Tag Type for DynamicQoSCharacteristic

Table 4.7. Stereotype and Tags for StaticQoSCharacteristic

 The Stereotype and tags for the AutomatedProcess, ManualProcess and

ProcessTransition are shown in Table 4.8. They extend the classifier of the UML meta-

model. The tags indicate the model used for automated or manual processes and the

method, that needs to be automated or to be done manually. The tag types are shown in

Table 4.9.

Table 4.8. Stereotype and Tags for Process

 51

Table 4.9. Tag Type for Process

 The stereotype and tag for StaticQoSProfile is shown in Table 4.10. The

<<StaticQoSProfile>> extends the classifier and it has the tag for, which relates the

profile to the QoSComponent. The tag is of type association. The

StaticQoSCharactersitic does not vary during runtime, so the concept of profile transition

does not exit.

Table 4.10. Stereotype and Tags for StaticQoSProfile

4.2.1. Graphical Representation of Stereotypes and Tags

 This section shows a graphical representation of the stereotypes that enable the

component developer to specify QoS in a visual paradigm such that generation of QoS

code using techniques such as [GME02] can be automated.

 52

DynamicQoSProfile:

Figure 4.8. Visual Representation of DynamicQoSProfile

Transition:

Figure 4.9. Visual Representation of Transition

DynamicQoSStatement:

Figure 4.10. Visual Representation of DynamicQoSStatement

 53

DynamicQoSCharacteristic:

Figure 4.11. Visual Representation of DynamicQoSCharacteristic

StaticQoSCharacteristic:

Figure 4.12. Visual Representation of StaticQoSCharacteristic

StaticQoSProfile:

 Figure 4.13. Visual Representation of StaticQoSProfile

AutomatedProcess:

Figure 4.14. Visual Representation of Automated Process, Manual Process and Process
Transition

 54

4.2.2. OCL Expression for Precise Constraint

The DynamicQoSStatement expresses the constraints using an OCL expression.

As indicated in Chapter 2 (section 2.5), the OCL expresses constraints on the functional

model and has essential constructs to specify them. The DynamicQoSStatement model

element, which was shown in Figure 4.10, has, a SingleDynamicQoSStatement, which is

composed of DynamicQoSConstraint. The constraint attribute of the

DynamicQoSConstraint specifies the precise constraint using an OCL expression. The

OCL expression used for specifying a constraint in the visual model has only the

constraint expression part. The context for the constraint is provided by the for attribute

of the DynamicQoSProfile modeling element. For example, assume a component that has

a method named getData, which performs the functionality of retrieving the data from the

database. The constraint the component developer wants to have on this method is that

the delay for retrieval should be less than 50 ms. The QoS specification for the method

getData is as shown in Figure 4.15. The OCL expression used for the constraint is �delay

< 50 ms�. The delayProfile specifies the context for which the constraint has to be

applied. This QoS specification mechanism uses both visual and text for specifying QoS.

Figure 4.15. Delay Constraint Using OCL in DynamicQoSStatement

 55

4.3. Relating Functional and Non-functional Models

The UML provides a graphical paradigm to express the functionality of the system at

a high level of abstraction than implementation level. It provides graphical elements that

can be combined to form a diagram. For example, a class diagram in UML has the

following visual elements:

! Class representation

! Association

! Inheritance and Generalization

! Aggregation

! Interface and realization

! Visibility

The UML also provides rules for combining the visual elements. The component

developer may use all or some of these visual elements to represent the class diagram for

the system during the design phase. The other, diagrams that are provided in the UML are

• Object diagram

• Use case diagram

• State diagram

• Activity diagram

• Collaboration diagram

• Component diagram

• Deployment diagram

 These diagrams express multiple views of the system and a set of these multiple

views constitute a model. The diagrams are used to represent the functional view of the

system and hence it is called the functional model of the system.

 The UML capability for specifying QoS was enabled by providing visual

elements (stereotypes and tagged values), which were presented in the section 4.2.1 of

this chapter. These visual elements enable a component developer to provide a QoS view

of the functional model of the system. The developer community has considered the QoS

as non-functional attributes of the systems; hence, the QoS view is termed the non-

functional model in this thesis. Since the non-functional model specifies the QoS view of

 56

the corresponding functional model, a way of relating both of the models is needed. The

thesis proposes an approach to relate the two models using the Collaboration diagram.

The Collaboration diagram depicts [TUT02]

! The Objects involved in interactions.

! The messages sent between the objects during interactions.

! Sequencing of the messages involved in the interactions.

! Associations of the objects involved in the interactions.

The messages sent between objects in a Collaboration diagram are represented by

arrows, which point to the receiving object near the end of the association line between

two objects. A label near the arrow shows the content of the message. The Sequence

diagram of UML is considered to depict the same information as collaboration diagram,

but the emphasis is on the time and not on the content of the message being sent between

the two objects. An arrow from one object to another object in a Sequence diagram

depicts only that a message was sent at that specific time. Thus, a sequence diagram may,

or may not, depict the message content. However, the semantics of collaboration diagram

require that the message content and other information be included in the diagram, so it

provides a sure way to depict the QoS specification information.

The Collaboration diagram emphasizes on the content of the message, so a

context for the applicability of the QoS model can be indicated. The Figure 4.16 shows

one such diagram where an endToEndDelay non-functional model is related to the

functional model depicted in the collaboration diagram. The functional model depicts the

two collaborating objects (DocumentTerminal and DocumentServer). The message

getDocument (name) is being sent from DocumentTerminal to DocumentServer. This

message is annotated with QoS specification. The *endToEndDelay specifies the QoS for

the method and *capacity specifies the number of threads or requests the

DocumentServer object should handle.

 57

Figure 4.16. Collaboration Diagram Indicating the Relation Between Functional and

Non-functional Model

A general algorithm to interpret the annotated collaboration diagram is described

below.

 In a collaboration diagram

 For objects depicted in the collaboration diagram

 Check if messages are sent between objects or within an object

 if a message is sent check for QoS specification annotation

 If QoS annotation exists then

 Apply the relevant QoS specification for the object /method in the object to

 which the message is directed.

4.3.1. Reusability of Non-functional Model

 Specifying QoS involves annotating the collaboration diagram to indicate the

context for applying the QoS specification. As QoS specification is a separate view of the

corresponding functional model, the for attribute of the DynamicQoSprofile specifies the

context where the QoS specification has to be applied. This attribute may specify many

contexts for which a QoS specification can be applied. An example of multiple contexts

is shown in Figure 4.17.

 58

Figure 4.17. Collaboration Diagrams Indicating Reusability

 The collaboration diagrams shown in Figure 4.17 depict the interaction of

DocumentTerminal object with the DocumentServer and UserValidationServer. The

message sent from DocumentTerminal to UserValidationServer is annotated with

*endToEndDelay and the message sent from DocumentTerminal to DocumentServer is

annotated with *endToEndDelay. It implies the same QoS specification to be applied for

both the methods. The for attribute in DynamicQoSProfile element of the QoS

specification will indicate these methods, thereby providing the association of QoS

specification to both the methods. The endToEndDelayProfile is shown in Figure 4.18.

Figure 4.18. Multiple Context Specification using an endToEndDelay Profile

 59

4.4. Mapping of Non-functional Model onto the Code

The previous sections of this chapter proposed a specification mechanism for the

QoS, during design of the system. This section provides an algorithm for transforming

the QoS parameter specification onto the necessary code for a component

implementation.

4.4.1. Mapping of Dynamic QoS Specification onto the Code

A general algorithm for model transformation is presented first and then an

example is illustrated by taking a parameter into consideration and applying the

transformation algorithm. The transformation process chosen here involves model-to-

model transformation and then, transformation of the refined model to code. However, a

model can be transformed into code without refinement. The model refinement helps in

generating minimum code (e.g., minimum number of classes) and provides the same

functionality as the one which was generated without refining the model.

 A general algorithm for model-to-model transformation for a dynamic QoS

specification is given below:

 For a dynamic QoS parameter specification,

 i. Merge the functionality of the Domain with the QoS characteristics.

 ii. Merge the functionality of CompoundQoSStatement, ProvidedQoS,

 RequiredQoS and DynamicQoSConstraint into

 SingleQoSStatement.

 ii. Merge the functionality of Transition into QoSProfile.

 A general algorithm for transforming the refined model of dynamic QoS

parameters into code is given below.

 60

 For a dynamic QoS parameter specification

 i. Create a class named DynamicQoSProfile with relevant attributes, which are

indicated in the UML representation.

 In the DynamicQoSProfile class,

i. Create a reference to the object or the method for which the

DynamicQoSProfile has to be applied. The object or method is

obtained from the collaboration diagram.

ii. Create a reference to another DynamicQoSProfile which will be

called when the current profile needs to be changed. Obtain the

target DynamicQoSProfile from the to attribute of the current

DynamicQoSProfile.

iii. Create a method which will invoke a method in the object for

which the QoS specification is depicted. The method in the object

will let the object know about the change in profile due to

environmental conditions.

iv. Create a reference to the DynamicQoSStatement class that

passes the object to the DynamicQoSStatement class.

 ii. Create a DynamicQoSStatement class with the attributes indicated in its UML

representation.

 In the DynamicQoSStatement class,

i. Create the necessary statements for expressing the constraints on the

object or method of the object.

ii. if multiple constraints are specified then, use the logical operators, for

indicating the relation between the statements specifying constraint.

iii. Create the RequiredQoS statement, which specifies the QoS required

by the object or method.

iv. Create the ProvidedQoS statement which specifies the QoS provided

by the component if the required QoS is met.

 61

v. Create a reference to QoSCharacteristic class to obtain information

regarding the values of the QoSCharacteristic.

iii. Create the DynamicQoSCharacteristic class with necessary attributes for

providing information about the values of the QoS parameters.

Figure 4.19 shows the dynamic QoS parameter specification elements for

throughput. Each element could be transformed into classes and references created for

class interactions. But some of the elements provide little functionality and can be

merged with other elements. For example in Figure 4.19, the QoS characteristic

throughput, has a domain that specifies the values, it can have. A reference to the Domain

class can be instantiated in the Throughput class, which enables, the Throughput class to

know the values, a throughput can have. The Domain class does not provide any other

functionality, so its existing functionality (attributes) can be merged into the throughput

class.

The UML provides the elements to emphasize on the individual concepts. While

transforming them onto code, the model can be refined and another model can be

generated that merges some of the concepts. The approach followed here for

transformation uses merging of some concepts.. One such refined model, where the

functionality of some of the elements is merged together is shown in Figure 4.20. This

model will enable generation of fewer classes compared to the original model.

In the Figure 4.19, the concept of CompoundThrougputStatement, which specifies

the relational operator between the two SingleThrougputStatement can be merged into

SingleThrougputStatement with a logicaloperator attribute added to it. The

logicaloperater in SingleThroughputStatement still relates the statements. Similarly, the

ProvidedQoS and RequiredQoS can be merged into the SingleThroughputStatement. The

attributes of the ThroughputConstraint concept can be added to the

SingleThroughputStatement.

 The Domain attributes can be added to the Throughput characteristic model

element as they specify only the values the Throughput characteristic can have. The

 62

Transition model element attributes can be added to the ThrougputProfile. The

transformed QoS specification model is shown in Figure 4.20.

Throughput parameter: It has been defined in [BRA02] as the response time of the

component. The specification for Throughput QoS parameter is shown in figure 4.19.

Figure 4.19. Throughput QoS Specification

 63

Figure 4.20. Transformed Throughput Model

 Transformation of the model depicted in Figure 4.20 onto the component code is

explained below. This transformation specifies the creation of necessary classes and

methods for measuring and enforcing QoS.

 1. Create a class named ThroughputProfile with attributes as indicated in the

UML representation. In the ThroughputProfile,

Create a reference to the object or the method for which the Throughput

profile has to be applied. The object or method is obtained from the

collaboration diagram.

Create a reference to another Throughput profile which will be called

when the current profile needs to be changed. The target Throughput

profile is indicated by to attribute.

Create a method which will invoke a method in the object for which the

QoS specification is depicted. The method in the object will let the object

know about the change in profile due to environmental conditions.

 64

Create a reference to SingleThroughputStatement class and pass the object

to the SingleThroughputStatement class.

 2. Create a SingleThroughputStatement class with attributes indicated in the UML

representation. The SingleThroughputStatement expresses the constraint. In the

SingleThrougputStatement,

Create the necessary statements for expressing the constraints on the

object or method of the object. For example, the Throughput constraint of

20 executions/ms on a method will incorporate the line of code as shown

in Figure 4.21. The statements measure the time required to execute the

method and average the time for 50 method calls. These statements vary

based on the QoS parameter. For capacity parameter, the statements will

provide a multithreading capability for the component. A tool can be

programmed to add the corresponding statements related to the QoS

parameter.

accumulate = 0;

While (I <=50)

Time1 = startTimer()

objectName.Method()

Time2 = stopTimer()

accumulate += (Time2 � Time1)

end while

throughput = 50/ accumulate

 if(throughput >= 20) //Single constraint

 output result

 else

 output low throughput

Figure 4.21. Throughput Constraint Realization Code

 65

For multiple constraints, use the logical operator for indicating the relation

between the statements specifying constraint.

Create the RequireQoS statement, which specifies the QoS required by the

object or method. (throughput >=20) in Figure 4.19 reflects a statement

which is required QoS for outputting the result.

Create the ProvideQoS statement that specifies the QoS provided by the

component if the required QoS is met.

Create a reference to the Throughput class to obtain information regarding

the values of the Throughput. The information can be how the value of the

QoS parameter is expressed and whether increasing or decreasing value is

good.

 3. Create a Throughput class with necessary attributes for providing the

information about the values of the QoS parameter.

 This algorithm will enable instrumentation of the necessary dynamic QoS

parameter code that will measure and ensure the QoS of the component.

4.4.2. Mapping of Static QoS Specification onto the Code

 Determination of static QoS will involve external tests on the component as static

QoS involves judging the characteristics of a developed component. Some of the

characteristics are: how well the component has been designed, how easy it is to change

the functionality of the component, etc. There are many models that provide concepts for

determining different static QoS. These concepts vary from approach to approach. So,

considering incorporation of static QoS parameters during design time will involve the

incorporation of the concepts of an approach as well as providing the necessary interface

to test the static QoS.

 Consider the model for access control [BUR03] shown in Figure 4.22. The

access-control model depicts the necessary concepts that can be used for incorporating

guards and security policies into the component code. It also can act as a standard for

 66

creating the test cases to test the access-control QoS characteristics. The stereotypes and

tagged values can be identified from the concepts and a profile for access-control can be

created, which will enable modeling of access-control QoS, thereby providing a way to

specify access�control QoS during the design phase of the system as well as to create test

cases to test the access-control QoS. This access-control profile will help in automating

the process of placing necessary guards for the system and generating interfaces for

testing. The test cases generated based on this model will enable the determination of

access-control QoS for the component.

 The model shown in Figure 4.22 specifies that a guard consults with the login

manager, which in turn consults with the Authentication server to verify the authenticity

of the user of the system. Once the user is authenticated, the guard consults with the

Access manager to find the access policy for the user. The access policy varies based on

the security context. The context can be a group, accessId, role, or dynamic property. The

Access manager consults with the Authorization server for providing the access

privileges. The Authorization server consults with the appropriate Decision authority for

authorizing the user. The Decision authority consults with the Access policy evaluator.

The Access policy evaluator evaluates the access policy for the user and returns the

result, which is sent down the hierarchy to let the guard know about the policy for the

user.

 The collaboration diagram is used to determine where the static QoS model has to

be applied. The access-control model shown in Figure 4.22 does not involve any manual

intervention concepts. The entire process can be automated, so this is specified using the

AutomatedProcess element of the UML profile for QoS. The AutomatedProcess element

in Figure 4.23 specifies the model used and the part that needs to be automated. In this

case the model used is the access-control model shown in Figure 4.22 and the process

that needs to be automated is the placement of guards and appropriate security policies

for the user. The stereotypes identified for this purpose from the [BUR03] model is

shown in Table 4.11. These stereotypes will enable incorporation of access-control

mechanism in the component code and provide an interface to test the access-control. It

 67

also acts as a standard to create test cases to test the access control. A sample test case

could be to find out whether the access manager checks for the proper policy for the user.

 Transformation rules for mapping static QoS parameters varies for different static

QoS parameters as the approach for determination processes are different for different

parameters. Therefore, generalized mapping rules cannot be determined. It is left to the

tool provider to incorporate the necessary transformation rules for automating the

incorporation of static QoS parameters for an approach. However, the process will still

involve refining the model by transforming the model to another model. The

transformation rules for the transformed model will provide the necessary mechanism for

generating the necessary QoS code in the component. The transformation of model to

code will still involve generation of classes and reference and required statements and

interfaces in the component

Table 4.11. Stereotype and Tags for Access Control

 68

Figure 4.22. Access Control Model

 69

Figure 4.23. Access Control Specification

This chapter presented an approach for specifying QoS which involved

determination of concepts of QoS, creation of UML profile for QoS, relating the

functional and non-functional models and model-to-code transformation using manual

approach. It also showed how to specify a parameter using the QoS model. In the next

chapter a case study from the document management system domain is presented to

illustrate the applicability of the QoS specification mechanism in real world scenarios.

 70

5. CASE STUDY

The Chapter 4 of this thesis presented a QoS specification mechanism which will

enable generation of QoS aware components. Chapter 3 of this thesis presented the

UniFrame approach for automating the process of integration of heterogeneous

components to create distributed systems that conform to quality requirements. The QoS

catalog, a part of the UniFrame framework, was also presented, which will enable the

component developer to choose the QoS parameters relevant for the component being

developed. The QoS specification mechanism presented in Chapter 4 will enhance the

QoS catalog by providing information about specification of the QoS parameters. This

will enable the component developer to specify the QoS parameter chosen from the QoS

catalog during the design phase of the component for incorporating the QoS in the

component. The QoS specification mechanism will also assist in generating quality aware

templates and thereby enabling generation of quality aware glues using the UniGGen

framework in UniFrame.

 This chapter presents a case study that will show the applicability of the QoS

specification mechanism. A case study from the document management system is chosen

for the purpose. The document management system handles management of documents,

and, if the system is associated with a domain such as defense, it has to provide proper

QoS, like access-control, quick access of documents, etc. A document management

system for a defense domain provides scenarios where the QoS specification can help in

generating a quality aware system.

The document management system involves management of documents, such as

storing a document, retrieving a document, deleting a document, listing documents,

creating a document, authenticating the user and providing a user interface to the system.

 71

The system integrator who wants to build a document management system using

the UniFrame approach will present a query, that will detail about the system and the

QoS required from the system. Based on the information present in the knowledgebase,

the components which are needed for a document management system and the QoS

needed for each component (based on composition and decomposition rules [SUN02] for

the system) are determined and the search process for the components is initiated.

Suppose for example the components needed for building the system were a

DocumentTerminal, a UserValidationServer and a DocumentServer, the search process is

initiated to discover these components on the network. The component developers would

have advertised the QoS provided by the functionality of their components in the

corresponding UMM specification format.

The DocumentTerminal component will provide the user interface for the system

for storing, retrieving, deleting, creating and listing documents. The component will also

provide an interface for user authentication. The DocumentServer component will

provide the actual functionality of storing, retrieving, deleting and accessing, and creating

the documents. The UserValidationServer component will authenticate the user of the

system. The Figure 5.1 shows the class diagram for the document management system.

 Functionality

 UserInterface

 UserInterface

Functionality

Figure 5.1. Class Diagram for Document Management System

DocumentTerminal

validate()
UIcreateDocument()
UIgetDocument()
UIlistDocument()
UIstoreDocument()
UIdeleteDocument()

DocumentServer

createDocument()
getDocument()
listDocument()
storeDocument()
deleteDocument()

UserValidationServer

validateUser()
createEntry()
deleteEntry()

 72

The UniFrame knowledgebase, also contain information about functionality of the

system. The information about the functionality could be represented by using the

features provided by UML. (e.g., class diagram, sequence diagram, collaboration

diagram, etc). Figure 5.2, depicts one such piece of information, which gives details

about the timing and sequence of messages sent between interacting components and the

life of each object in the system. This information is represented using the sequence

diagram of UML.
Validate User

Get Document

 LockDocument

Figure 5.2. Sequence Diagram for Validating User and Retrieving Document

:DocumentTerminal :UserValidationServer
User

Enter user ID and password

Display validation status

status:=validate()

:DocumentTerminal :DocumentServer
User

Enter document name

Display getDocument status

getDocument()

 73

The sequence diagram, shown in Figure 5.2 indicates the interaction of

components for validating the user and retrieving the document. The vertical rectangular

box below each object specifies the life time of the objects required for successful

completion of the interaction and the ordering of arrow indicates the timing of the

messages.

The collaboration diagram indicates the interaction of components along with the

content of the message being sent during the interaction. Figure 5.3 shows the

collaboration diagram for DocumentTerminal, DocumentServer and

UserValidationServer.

1: Enter Document name 1.1: status = getDocument(name)

 2: Display Result

1: Enter Document name 1.1:uservalidatestatus = validate(name)

 2: Display Result

Figure 5.3. Collaboration Diagrams for Document Management System.

The other diagrams that convey information about the functionality of the system

are not depicted in the case study. The QoS specification mechanism proposed in this

thesis assumes that the information about the functionality of the system will be provided

by the knowledgebase.

:DocumentTerminal :DocumentServer

:DocumentTerminal :UserValidationServer

 74

When the search process is finished, it returns the list of discovered components.

There may be multiple components discovered that provide the same functionality. For

example the discovery process may return two DocumentServer components that satisfy

the QoS. The system integrator may choose the components that can provide the best

QoS and use it to build the system. In some cases the discovery process may not be able

to find the necessary components, in which case there is a need for developing the

component so that a system can still be built. The component developed needs to provide

the required QoS. The component can be developed by writing the entire code or use the

existing technologies like [GME02], which provides a framework to generate code

automatically based on the information about the functionality of the system represented

in the visual paradigm. The QoS specification mechanism presented in Chapter 4 can be

used to represent the QoS specification in [GME02] and the incorporation of rules for

relating the non-functional and functional model and the rules for generating the code

from the related model (the non-functional model applied to the functional model) will

enable [GME02] to generate code that is quality aware.

Assume, for example, that the discovery process is not able to find the

DocumentServer component and an automatic code generation mechanism is used to

generate the code, for that component. The process followed for it involves representing

the functionality of the component along with its interaction with the other components

using a visual paradigm.

The class diagram shown in Figure 5.1 depicts the relationship of components. It

also indicates the methods that are part of the components. The sequence and

collaboration diagrams for the DocumentServer component, which were shown in

Figures 5.2 and 5.3 respectively, indicate the interactions of the components in the system

with one emphasizing time and the other emphasizing the messages being sent.

To generate a quality aware code for DocumentServer, the QoS, which has to be

provided by the component, has to be determined. Assume that the system integrator had

requested a document management system that can retrieve the documents within 120

ms. Based on QoS information presented by the system integrator, the knowledgebase

determined that the QoS provided by DocumentTerminal (interface to the user) to be 120

 75

ms. Since DocumentTerminal uses the functionality provided by DocumentServer, the

DocumentServer has to provide the document retrieving functionality within 80 ms.

The class diagram shown in Figure 5.1 indicates that the DocumentServer

component provides the document retrieving functionality using the getDocument

method. The DocumentServer has to impose a constraint on the time to execute (here

80ms) for the method getDocument. The QoS parameter chosen from the QoS catalog for

this QoS is endToEndDelay (the time to execute the method). The QoS specification for

the method using the proposed approach in this thesis is shown in Figure 5.4. The

endToEndDelay for the method should not be more than 80ms. The specification

indicates that a decreasing value of the endToEndDealy is good (meaning desirable). To

take into account the possibility of providing response (based on environmental

conditions) in less than 80ms, a profile is created that has statements which can measure

and ensure QoS of less than 80ms. For this example, an endToEndDelayprofile1, to

ensure response within 60ms is created along with the endToEndDelayprofile2, which

will ensure a response within 80ms. The endToEndDealyProfile1 says that the profile is

for the method named getDocument () and this profile will ensure the endToEndDelay of

60ms. The transition indicates the endToEnddelay profile to switch to in case the

environment cannot provide the QoS needed by the component (in this case it is

endToEndDelayProfile2). ProvideQoS statement specifies that the method will execute in

60ms provided that it gets the result from its database access within 50ms. The database

is assumed to be embedded in the DocumentServer for this example. The second profile

(endToEndDelayProfile2) specifies the second set of statements which assume a weaker

QoS from the environment. The second profile states that the method will execute in

80ms provided that the database access happens in 70ms.

 76

Figure 5.4. endToEndDelay QoS Specification

<<Domain>>

direction: decreasing

<<endToEndDelay>>

invariant: false

<<endToEndDelayProfile1>>

for: DocumentServer.getDcoument()

<<Transition>>

from: endToEndDelayProfile1
to: endToEndDelayProfile2
operation: changeProfile

<<endToEndDelayStatement>>

<<SingleendToEndDelayStatement>>

<<endToEndDelayConstraint>>

qualification: Guaranteed
constraint: endToEndDelay < 60ms

<<ProvidedQoS>>

provide: endToEndDelay <
60ms

<<RequiredQoS>>

require: endToEndDelay < 50ms

<<endToEndDelayProfile2>>

for: DocumentServer.getDcoument()

<<endToEndDelayStatement>>

<<SingleendToEndDelayStatement>>

<<endToEndDelayConstraints>>

qualification: Guaranteed
constraint: endToEndDelay < 80ms

<<ProvidedQoS>>

provide: endToEndDelay <
80ms

<<RequiredQoS>>

require: endToEndDelay < 70ms

 77

The collaboration diagram for the DocumentServer interacting with the

DocumentTerminal that is annotated with the QoS specification is shown in Figure 5.5.

The diagram indicates collaborating components and the message being passed. The

message indicates the execution of the getDocument () method in the DocumentServer

and the *endToEndDelay specifies that endToEndDelay (Dynamic QoS parameter) QoS

specification for the method has to be applied.

: Enter Document name 1.1: status = getDocument(name)

 *endToEndDelay

 2: Display Result

Figure 5.5. Collaboration Diagram Specifying the QoS Specification

 Following the algorithm proposed in Chapter 4 (section 4.3) for relating the

functional and the non-functional models, the message sent from DocumentTerminal to

DocumentServer is found to be annotated with the endToEndDelay specification in

collaboration. Now the endToEndDelay specification that was shown in Figure 5.4 is

applied.

 The algorithm for model transformation to code, which was indicated in Chapter

4 (section 4.4.1) is applied on the model to generate code. The class

endToEndDelayProfile1 and singleendToEndStatement1 are the resultant QoS classes

after transformation which will measure and ensure the end to end delay of 60ms. The

endToEndDelayProfile1 gets the reference of the object which has the method for which

the QoS profile is applied. The singleendToEndDelayStatement file provides the

necessary mechanism (like using timer) to measure the end to end delay for the method.

The QoS specification mechanisms aided in generating some of the necessary code to

measure and provide the QoS of the component. This code will be part of the component

which is being developed, thereby making the component to be quality aware. The class

endToEndDelayProfile2 and singleendToEndDelayStatement2 ensure end to end delay of

:DocumentServer
:DocumentTerminal

 78

80ms for the method getDocument. The sample code of the classes

endToendDelayProfile1 and singleendToEndDelayStatement is shown below.

File: endToEndDelayProfile1

import java.util.*;
import java.rmi.*;
import java.lang.reflect.*;
import java.io.*;

public class endToEndDelayProfile1
{
 private String for;
 private String from;
 private String to;
 privtate String operation;

 /**
 * This method is to provide dynamic component QoS testing.
 */
 public ComponentQoS component_dynamic_test(String name) throws
RemoteException
 {

 String componentName = name;
 System.out.println(" The component name is " + componentName);
 ComponentQoS componentQoS = new
ComponentQoS("Document",componentName); // to store the values of the QoS

 try
 {
 IDocumentManagement
documentServer(IDocumentManagement)Naming.lookup("//magellan.cs.iupui.edu:9876/
DocumentServer");
 endToEndDelayProfile endToendDelayProfile2 = new
endToEndDelayProfile()
 singleendToEndDelayStatement endToEndDelayStatement = new
singleendToEndDelayStatement();
 /* A reference is created to the DocumentServer, another profile and the
statement class */

 }
 catch(Exception e)
 {

 79

 System.out.println(e);
 }

 endToEndDelayStatement.statementon(documentServer);

 }

 public profileChange(documentServer)
 {

 documentserver.operation() //inform about the change in profile
 }

 public static void main(String args[]){
 try {

 endToEndDelayProfile EndToEndDelay = new endToEndDelayProfile();

 String docname = args[0];

EndToEndDelay.component_dynamic_test(DocumentServer);
 }
 catch (Exception e){
 System.out.println(e);
 }
 }
}

 80

 File: singleendToEndDelayStatement1

import java.util.*;
import java.rmi.*;
import java.lang.reflect.*;
import java.io.*;

public class singleendToEndDelayStatement
{
 private String Qosparameter;
 private String Constraint;
 private String qualification;
 private String LogicalOperator;//Attributes from the UML diagram
 Private String provide;
 Private String Require;

 private Hashtable startingTimeTable; //keys: function name; values: Time objects
 private Hashtable stoppingTimeTable; //keys: function name; values: Time objects
 private long accumulatedDelay = 0;
 private int accumulatedCalls; //number of accumulated calls
 private double ETEDgetDocumentDS;

 public String docName ="";
 public String doc1 = "";
 /**
 * Constructor.
 */
 public SingleendToEndDealyStatement()
 {
 reset();

 }

 /**
 * Reset/initialize the private members.
 */
 public void reset()
 {
 startingTimeTable = new Hashtable();
 stoppingTimeTable = new Hashtable();
 accumulatedDelay = 0;
 accumulatedCalls = 0;

 }
 /**

 81

 * This method records the starting time.
 */
 public void startTimer(String functionName)
 {
 if(functionName != null && !functionName.trim().equals(""))
 {

 Time startingTime = new Time();
 startingTime.getTime();
 startingTimeTable.put(functionName, startingTime);
 }
 }

 /**
 * This method records the stopping time.
 */
 public void stopTimer(String functionName)
 {
 if(functionName != null && !functionName.trim().equals(""))
 {
 Time stoppingTime = new Time();
 stoppingTime.getTime();
 stoppingTimeTable.put(functionName, stoppingTime);
 }
 }

 /**
 * This method returns end to end delay in usecond.
 */
 public long getEndToEndDelay(String functionName)
 {
 if(functionName != null && !functionName.trim().equals(""))
 {
 Time startingTime = (Time)startingTimeTable.get(functionName);
 Time stoppingTime = (Time)stoppingTimeTable.get(functionName);

 if(startingTime == null || stoppingTime == null)
 {
 return -1;
 }
 else
 {
 long second = stoppingTime.getSecond() - startingTime.getSecond();
 long uSecond = stoppingTime.getUsecond() - startingTime.getUsecond();

 82

 startingTimeTable.remove(functionName);
 stoppingTimeTable.remove(functionName);

 return second * 1000000 + uSecond;
 }
 }
 else
 return -1;
 }

 /**
 * This method accumulates delay.
 * */
 public void accumulateCallDelay(long delay)
 {
 accumulatedDelay += delay;
 accumulatedCalls++;
 }

 /**
 * This method gets end to end delay (usecond).
 */
 public double getEndToEndDelay()
 {
 //sec/call
 double endToEndDelay = -1;

 if(accumulatedCalls != 0)
 {
 endToEndDel = (accumulatedDelay + 0.0)/accumulatedCalls;
 }

 return endToEndDelay;
 }

 public void giveTime(String field){

 Time t1 = (Time)startingTimeTable.get(field);
 Time t2 = (Time)stoppingTimeTable.get(field);
 System.out.println("Starting time is " + t1.getUsecond());
 System.out.println("Ending time is " + t1.getUsecond());
 System.out.println("Elapsed time is " + (t2.getUsecond() - t1.getUsecond()));
 }

 public void statementon(DocumentServer)

 83

 {
 DocumentServer documentServer;
 }

 /**
 * This method is to provide dynamic component QoS testing for the method
getDocument
 */
 public QoSstatements(String name) throws RemoteException
 {

 System.out.println("Calling getDocument ");
 docName = doc1;
 for(int i = 0; i < 50; i++)
 {
 docName = docName + (i+700);
 docendToendDelay.startTimer("getDocument");
 documentServer.getDocument(docName);
 docendToEndDelay.stopTimer("getDocument");

docendToEndDelay.accumulateCallDelay(docendToEndDelay.getEndToEndDelay("get
Document"));
 }
 ETED = docendToEndDelay.getEndToEndDelay();
 ETEDgetDocumentDS = ETED;
 System.out.println("The end to end delay is " + ETED);

 }
}

 The determination of Static QoS parameter involves external tests on the

component. However, the component developer may incorporate the concepts used for

testing to provide an interface as well as the quality code. One such model [BUR03],

which was depicted in Figure 4.22, can be used to incorporate the access control into a

component. The model also presents concepts that can be used for creating test cases to

test the access-control QoS of the component. Figure 5.6 shows the collaboration

diagram of the UserValidationServer and DocumentTerminal. It indicates that the access-

control specification should be used for placing the guard�s policy for the user specified

 84

in the name parameter. The specification shown in Figure 5.7 specifies that the access

control model does not involve any manual concept. The stereotype and tagged values

which were identified from the access-control model (Chapter 4, Table 4.11) can be used

to automate the process of inserting guards and policies for the component Since the

approach used for static QoS, varies from model to model, a general transformation on to

code cannot be incorporated. It is left to the developer to provide transformation rules for

the approach being used for static QoS.

.

Figure 5.6. Collaboration Diagram for DocumentTerminal and UserValidationServer

Figure 5.7. Access-Control Specification

 In this chapter a case study was presented where the QoS specification

mechanism was applied to a component being developed to make it quality aware. The

QoS specification mechanism is general and can be applied to develop quality aware

complex systems composed of many components.

<<AutomatedProcess>>

automate: gaurds
modelused: Bur

<<Domain>>

direction: increasing

<<access-control>>

invariant: true

<<access-controlProfile>>

for: UserValidationServer.validate(name)

 85

6. CONCLUSION

This thesis presented an approach for specifying the QoS during the design and

development phases of the component. This chapter concludes the thesis by presenting

the features of the QoS specification mechanism, drawbacks of the mechanism and

possible future enhancements.

6.1. Features of QoS Specification

The features of the specification mechanism are:

• It provides the QoS concept which enhances the UniFrame knowledgebase�s

ability for specifying QoS parameters. The concepts are very generic and can be

applied to any QoS parameter.

• It provides necessary constructs to express the QoS concepts such that it can be

used to specify QoS requirements during design and development of the software

component.

• It provides a mechanism to relate the QoS specification to the specification of

functional requirements and to reuse the QoS specification.

• It provides simple transformation rules for dynamic QoS parameter that will

enable the transformation of QoS specifications onto the code that will enforce the

QoS for the component.

 86

• It provides a specification mechanism for static QoS parameters that will enable

the developer to specify the model used for static QoS.

6.2. Issues Not Addressed

The following issues could not be addressed:

• The specification of the static QoS parameter for the component to provide the

necessary support for determining the static QoS depends on the model used.

The models do not provide a common approach and hence it could not be

addressed. However the model element for the static QoS emphasizes the need

for taking static QoS parameters into consideration during the design of the

component

.

• Transformation rules for static QoS parameter.

• The QoS statements that perform the necessary dynamic QoS functionality

depend on the QoS parameter. The QoS specification mechanism does not

specify the actual statements that get inserted into the component code. The

QoS statement model element specifies the constraint and how the constraint

is enforced by the QoS statements varies for different parameters.

6.3. Future Work

Some of the possible future enhancements are:

• Formal transformation rules for mapping the QoS specification onto the

component code. The transformation rules should be represented in formal

 87

fashion to enable the code generator to apply rules for generating

necessary QoS code.

• Enhancing the QoS specification for taking into account the composition

and decomposition of QoS of the system composed of components.

Currently, the decomposition and composition rules of [SUN02] are used

to find out the QoS for components and then the QoS specification

mechanism is used to specify QoS for each component.

• A tool that can incorporate the QoS specification onto the component

code.

• Representing the heterogeneity issues related to QoS in glues and

wrappers. The glues and wrapper mediate between heterogeneous

components and involve mechanisms to handle heterogeneity.

6.4. Summation

 This thesis presented an approach for QoS specification which will enable the

component developer to specify the QoS during design of the component. It also

presented an approach which will indicate the QoS requirement for the functional model.

Simple transformation rules were also presented that will enable generation of QoS code

for the component. A case study was presented to validate the approach. The QoS

specification mechanism will enable UniFrame to generate QoS aware glues.

 88

REFERENCES

 89

REFERENCES

[AAG01] Aagedal J. Ø., �Quality of Service Support in Development of Distributed
Systems�, PhD thesis, Department of Informatics, Faculty of Mathematics and Natural
Sciences, University of Oslo, 2001.

[AUG95] Auguston M., �Program Behavior Model based on Event Grammar and its
application for debugging automation�, Proceedings of the 2nd International Workshop on
Automated and Algorithmic Debugging, 1995.

[AUG97] Auguston M., Gates A., Lujan M., �Defining a program behavior model for
dynamic analyzers�, Proceedings of the 9th International Conference on Software
Engineering and Knowledge Engineering, pages 257-262, 1997.

[BBN01] BBN Corporation, Quality Objects Project Url: http://www.dist-
systems.bbn.com/ tech/QuO, 2001.

[BRA01] Brahnmath G., Raje R., Olson A., Sun C., �Quality of Service Catalog for
Software Components�, Technical Report (TR-CIS-0219-01), Department of Computer
and Information Science, Indiana University Purdue University Indianapolis, 2001.

[BRA02] Brahnmath G., Raje R., Olson A., Bryant B., Auguston M., Burt C., �A Quality
of Service Catalog for Software Components�, The Proceedings of the Southeastern
Software Engineering Conference, Huntsville, Alabama, pages 513-520, April 2002.

[BER01] Berzins V., Shing M., Auguston M., Bryant B., Kin B., �DCAPS-Architecture
for Distributed Computer Aided Prototyping System�, Proceedings of RSP 2001, the 12th

international workshop on rapid system prototyping, 2001.

[BUR02] Burt C., Raje R., Olson A., Bryant B., Auguston M., �Quality of Service Issues
Related to Transforming Platform Independent Models to Platform Specific Models,�
Proceedings of the 6th IEEE International Enterprise Distributed Object Computing
Conference, Lausanne, Switzerland, September 2002.

[BUR03] Burt C., Raje R., Olson A., Bryant B., Auguston M., �Model Driven Security:
Unification of Authorization Models for Fine-Grain Access Control�, Proceedings of
EDOC 2003, The 7th IEEE International Enterprise Distributed Object Computing
Conference, Brisbane, Australia, September 2003.

 90

[CAZ99] Cazzola W. et al., �Rule-based Strategic Reflection: Observing and Modifying
Behavior at the Architectural Level�, Proceedings of 14th IEEE International Conference,
Automated Software Engineering (ASE 99), IEEE Press, Piscataway, New Jersey,
October 1999.

[CID02] OMG CORBA IDL Specification, Url:
http://www.omg.org/gettingstarted/omg_idl.htm, 2002.

[CSA95] Frappier M., Matwin S., Mili A., �Software metrics for predicting
maintainability�, Canadian Space Agency, Software metrics study � Technical
Memorandum 2, 1994.

[FRO98] Frolund S., Koistinen J., �Quality of Service specification in distributed object
systems�, Distributed System Engineering Journal, Vol. 5, Issue 4, December 1998.

[GRE92] Green T., Petre M., �When visual programs are harder to textual programs�,
Human-computer interaction: tasks and organization, ECCE-6, CUD:Rome, 1992.

[GME02] The �Generic Modeling Environment�, Url:
http://www.isis.vanderbilt.edu/projects/gme/, 2002.

[ISO, 1986], Quality Vocabulary, ISO, Report: ISO 8402, page 8.

[ISO99] ISO/IEC JTC1/SC7, �Information Technology - Software product quality:
Quality model,� ISO/IEC, 9126, 1999.

[LOY98] Loyall J., Bakken D., Schantz R., Zinky J., �QoS Aspect Languages and Their
Runtime Integration�, Lecture Notes in Computer Science, Vol. 1511, Springer-Verlag,
Proceedings of the Fourth Workshop on Languages, Compilers, and Run-time Systems
for Scalable Computers (LCR98), Pittsburgh, Pennsylvania, pages 28-30, May 1998.

[MDA01] The �Model driven architecture�, Url: http://www.omg.org/mda/, 2001.

[NAY02] Nayani N., Raje R., Olson A., Bryant B., Burt C., Auguston, M, �An
Architecture for the UniFrame Resource Discovery Service,� Proceedings of SEM 2002,
3rd International Workshop on Software Engineering and Middleware, May 20-21, 2002,
Orlando, Florida Springer-Verlag Lecture Notes in Computer Science, Vol. 2596, pages
20-35, 2003.

[NOS90] Nosek J., Roth I., �Comparison of Formal Knowledge Representation schemes
as communication tool: predicate logic vs semantic network�, In: International Journal of
Man Machine studies, Vol. 33, pages 227-239, 1990.

[OCL01] The Object Constaraint Language, http://www.omg.org/cgi-bin/ocl, 2001.

 91

[OMG02] Object Management Group. 2002. �UML� Profile for Modeling Quality of
Service and Fault Tolerance Characteristics and Mechanisms�. Request for Proposal,
OMG document ad/02-01-07, Framington, MA, 2002.

[RAJ01] Raje R., Auguston M., Bryant B., Olson A., Burt C., �A Quality of Service �
based framework for creating Distributed Heterogeneous Software Components�,
Submitted to Informatica, 2001.

[RAJ00] Raje R., �UMM: Unified Meta-object Model for Open Distributed Systems�,
Proceedings of the fourth IEEE International Conference on Algorithms and Architecture
for Parallel Processing (ICA3PP'2000).

[RAJM01] Raje R., Auguston M., Bryant B., Olson A., Burt C., �A Unified Approach
forthe Integration of Distributed Heterogeneous Software Components�, Proceedings of
the 2001 Monterey Workshop, Monterey, California, 2001.

[SUN02] Sun C., Raje R., Olson A., Bryant B., Auguston M., Burt C., Huang Z.,
�Composition and Decomposition of Quality of Service Parameters in Distributed
Component-Based Systems�, Proceedings of the IEEE Fifth International Conference on
Algorithms and Architectures for Parallel Processing, Beijing, China, October 2002.

[SZY99] Szyperski C., �Component Software: Beyond Object-Oriented Programming�,
Addison-Wesley, ISBN 0-201-17888-5, 1999.

[TUT04] The UML tutorial, http:// odl-skopje.etf.ukim.edu.mk/uml-help, 2004.

[TUM04] Tummala K., �Glue generation framework in UniFrame for the CORBA-
JAVA/RMI interoperability�, Technical Report (TR-CIS-0302-03), Department of
Computer and Information Science, Indiana University Purdue University Indianapolis,
2004.

[UML01] The Unified Modeling Language,
http://www.omg.org/technology/documents/formal/uml.htm, 2001.

[VOA98] Voas J., �An Approach to Certifying Off-the-Shelf Software Components�,
IEEE Computer, June 1998.

[VOA95] Voas J., �Software Testability Measurement for Assertion Injection and Fault
Localization�, Proceedings of 2nd Int'l. Workshop on Automated and Algorithmic
Debugging (AADEBUG'95), St. Malo, France, May 1995.

[VOA96] Voas J., Ghosh A., McGraw G., Charron F., Miller K, Defining an
adaptive software security metric from a dynamic software failure tolerance measure,
Proceedings of the 1lth Annual Conference on Computer Assurance, pages 250-263, June
1996.

 92

[VOA98] Voas J., �An Approach to Certifying Off-the-Shelf Software Components�,
IEEE Computer, June 1998.

[VOA00] Voas J., Payne J., �Dependability Certification of Software Components�,
Journal of Components and Software, 2000.

[WAR03] Warmer J., Kleppe A., �The Object Constraint Language�, Addison-Wesly,
ISBN 0321179366, 2003.

